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Abstract

Background
Exposure to poor environmental conditions has been associated with deterioration of

physical and mental health, and the reduction of cognitive performance. Environmental con-
ditions may also influence cognitive development of children, but epidemiological evidence of
such impact is scant. In OECD countries, children spend an average 930 hours per year in a
classroom, second only to time spent in their bedroom. Using continuous sensing technology,
we investigate the relationship between indoor environmental quality (IEQ) and cognitive
performance of school-aged children, including health measures and socio-economic indica-
tors as mediators in the analysis.
Methods and Findings

A study design is presented to reliably monitor IEQ in a school setting, at an unprece-
dented scale. We will monitor the IEQ of 280 classrooms for a period of 5 years, covering
approximately 10,000 children. Each classroom in the sample is permanently equipped with a
sensor measuring the levels of air quality (carbon dioxide and coarse particles), temperature,
relative humidity, light intensity, and noise levels, all at one-minute intervals. Academic per-
formance of school-aged children is measured by means of individual nationally standardized
cognitive tests. In addition, the health status of each child in the sample is collected, together
with an extensive set of socio-demographic characteristics (e.g. parental income, education,
occupational status). Preliminary results from a pilot study monitoring eleven classrooms
during an academic year show significant heterogeneity in indoor environmental conditions
across classrooms and over time.
Conclusions

Evidence on the consequences of indoor environmental quality (IEQ) on cognitive devel-
opment is limited, whereas humans spend more than 90 percent of time indoors. Focusing on
schools, we find that IEQ varies significantly both during the school year and between class-
room. This reinforces the question on the effects of IEQ on cognitive performance, where IEQ
should be measured in a large-sample setting with a longitudinal design. The proposed study
will result in a better understanding of the effects of various environmental characteristics
on cognitive performance, thereby paving the way for experimental studies.
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tricht University, School of Business and Economics, Department of Economics, Tongersestraat 53, 6211 LM
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1 Introduction

Exposure to poor environmental conditions has been associated with deterioration of physical

health, mental health, and cognitive performance (Brunekreef and Holgate, 2002). However,

most evidence relies on outdoor measurements and is based on samples of the adult population.

There is a dearth of reliable and accurate evidence on the impact and distribution of indoor en-

vironmental conditions on human performance in general, and children’s cognitive development

in particular. Children are especially vulnerable to poor environmental conditions, and these

conditions might well be a significant determinant of outcomes in later life.

Children in developed countries spend an average of 7,450 hours in school buildings during

their primary and lower secondary education (OECD, 2016). After their home, schools are the

most frequented place for children on any given weekday. Schools are also a major consumer

of public funds. The U.S. alone invested USD49 billion per year in school facilities from 2011

to 2013. Yet, a recent study reports that 53 percent of U.S. public schools are in urgent need

of repairs, renovation and/or modernizations (U.S. Department of Education, 2014), providing

some indication that indoor conditions may be suboptimal in many schools. Understanding

better the relationship between the variation in indoor environmental conditions and cognitive

performance of children may thus have important implications for academia and society alike.

In this paper, we present an overview of studies that address the impact of environmental

conditions on children’s health and performance. We then present the design of the prospective

study. We also discuss the results from a pilot study, describing the variation of environmental

conditions across classrooms.

2 Literature

2.1 The effects of ambient environment on health and cognitive functioning

There is extensive evidence in the health science literature on the damaging effects of ambient

environmental stressors, such as extreme temperatures or air pollution, on physical and mental

health of individuals. For instance, heat waves or the presence of air pollutants, such as ozone or

fine particles both have been associated with respiratory or cardiovascular diseases in humans

Brunekreef and Holgate (2002); Nimon and Oswald (2013). More recently, empirical evidence

shows that air pollution can also cause serious damage to human nervous systems, impairing

proper cognitive functioning of people. In particular, research in the field of neuroscience suggests

that exposure to air pollution is related to ischemic stroke risk, depression and mood disorders

in adult populations (Calderon-Garciduenas et al., 2015; Taylor et al., 2015).

These hazards are expected to create even more severe damage among infants and young

children, as the immune systems, central nervous systems, and respiratory systems are not
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yet fully developed at a young age (Makri et al., 2004). Quasi−experimental evidence shows

that moderate levels of pollution in developed countries are associated with significant drops in

birth weight, increases in school absences, and infant mortality and morbidity (Currie, 2013).

Furthermore, children’s behavioral responses to environmental hazards differ from adults, since

children have limited decision power on how and where they spend their time. Exogenous shocks

in environmental conditions might well have detrimental consequences for individual human

capital accumulation and labor outcomes later in life.

Air Quality

Recent evidence suggests that the impact of air pollution on human performance goes beyond

direct health channels. A recent study of 39 schools in Southern Europe finds strong associations

between the level of traffic-related pollution (i.e. fine particles) and slower cognitive development

among children (Dadvand et al., 2015; Sunyer et al., 2015). Similarly, Ebenstein et al. (2016)

show that air pollution may also lead to immediate impairment of cognitive performance of

individuals. The authors link a longitudinal dataset of 400,000 high-stake test examinations in

Israel to ambient levels of pollution on the test day, documenting that a student taking an exam

on a day with high pollution (measured by levels of fine particles) scores, on average, 2.3 percent

lower.

Indoor air quality (AIQ) is not purely a by-product of outdoor air pollution, or purely

generated by outdoor sources alone. Rather, it is the result of a complex process affected by

building conditions and occupant-related factors (Madureira et al., 2016). The most commonly

used indicator of IAQ is the concentration of CO2, a colorless, odorless gas that is metabolically

produced by humans. CO2 is also used as a metric to evaluate the performance of ventilation

systems in buildings. The inhalation of high levels of CO2 has been associated with respiratory

and cardiovascular problems in humans (Seppänen and Fisk, 2004; Stankovic et al., 2016; Sundell

et al., 2011).The health science literature documents multiple physiological symptoms related

to poor ventilation in rooms, such as fatigue, headaches, and prevalence of asthma episodes

(Annesi-Maesano et al., 2013).These health issues, ultimately, have also been associated with an

increase in absence from work and school for adults and children, respectively (Mendell et al.,

2013; Shendell et al., 2004).

Studies in the field of epidemiology and neuroscience show significant impairments in cogni-

tive performance associated with poorly ventilated rooms (i.e. high levels of CO2). Experimental

evidence from functional magnetic resonance imaging (fMRI) in the field of neuroscience doc-

uments reduction in brain activity following inhalation of 5% (50,000 ppm) CO2 (Xu et al.,

2011).

Recent lab evidence suggests significant effects of moderate CO2 concentrations on the cog-
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nitive performance of individuals beyond the aforementioned health channels. These studies

typically evaluate the performance of healthy adults on different cognitive tasks in rooms where

CO2 levels have been manipulated. Zhang et al. (2017) show significant reductions in the speed

of addition, increased response time in a redirection task, and an increase in the number of errors

made by adults when undertaking those tasks in rooms with a CO2 level of 3,000 ppm (relative

to 500 ppm). Satish et al. (2012) find that, relative to a baseline of 600 ppm of CO2 (close

to outdoor levels), healthy adults exposed to 2,500 ppm of CO2 for 2.5 hours scored 44 to 94

percent lower along different cognitive dimensions, such as crisis response, or information usage.

Using a similar study design, Allen et al. (2016) document a 50 percent reduction in cognitive

performance after being exposed for 6 hours to CO2 levels of 1,400 ppm (relative to 550 ppm).

Temperature

The literature also highlights the role of temperature in affecting human health and perfor-

mance. In particular, strong links have been found between extreme temperatures and morbidity

and mortality in developed and developing countries (Patz et al., 2005). In addition, there is

increasing evidence from quasi-experimental field studies concerning the health and cognitive

implications of sharp variations in day-to-day temperatures (Hancock et al., 2007). Park (2017)

studies the effects of outdoor temperature during exam days on student performance, using 4.6

million high school exit tests in New York. The author finds that students taking an exam on

a day with temperatures higher than 32 ?C score up to 15 percent lower. Cho (2017) explores

the effect of temperature on student learning. In a cohort study including 1,729 high schools

in Korea (some 1.6 million students during 5 years) the author explores the changes in student

test scores within schools associated with heat waves during the academic year. The estimates

show a drop in math and English tests of 0.0042 and 0.0064 standard deviations for days with a

maximum daily temperature above 34 ◦C, relative to days with a maximum daily temperature

between 28 ◦C and 30 ◦C.

Lab experiments equally show the detrimental effects of passive heat on stress and human

cognitive function. These studies experimentally manipulate the exposure to high temperatures

(50 ◦C, 50% r.h.) over short periods (45 mins) and look at changes in performance on cognitive

tasks. The results indicate that individuals under heat stress perform worse in complex tasks

such as working memory or executive function (Gaoua et al., 2011; Taylor et al., 2015). Studies

in the area of neuroscience suggest that these drops might be a consequence of alterations in

blood flow and brain activity associated with heat stress (Taylor et al., 2015). The effects of

extreme temperatures on performance and health are likely to be even more damaging when

coinciding with other environmental factors, such as high relative humidity (Barreca, 2012) or

air pollutants such as ozone (Breitner et al., 2014).
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2.2 Existing Studies on Indoor Environmental Quality in Schools

Schools are commonly regarded to have poor indoor air quality, resulting from a combination of

high occupancy and poorly ventilated spaces. Numerous studies show that CO2 concentrations

in schools frequently go beyond the levels that facilitate proper cognitive functioning of occu-

pants. These thresholds have been defined by the American Society of Heating, Refrigerating

and Air-Conditioning Engineers (ASHRAE) and are typically used as cut-offs in academic re-

search, including the studies in epidemiology or neuroscience discussed in the previous section

(Fisk, 2017). However, the evidence on the implications of deficient environmental conditions in

classrooms for learning outcomes is still scant, and the magnitude and distribution of the im-

pact of indoor environmental quality (IEQ) on children?s school performance remains an open

question.

The most recent review of the literature identified 27 studies exploring the link between

ventilation rates and CO2 on children?s academic achievement or health (Fisk, 2017). The

current analyses tend to focus on one unique measure of environmental conditions (e.g. average

temperature in a classroom or average CO2 over the measurement period) as main explanatory

variable. Most studies are therefore not able to differentiate between the effects of indoor climate

on learning and testing performance. This differentiation is critical for the interpretation of

results and policy implications of any study.

The current evidence on indoor environmental conditions in schools and student perfor-

mance mostly relies on between-subject comparisons and do not contain information on health

outcomes at the individual level. The limited number of students in the typical sample, the use

of classroom-aggregated variables and the lack of background information about students hinder

examination of channels or heterogeneous effects of climate on student achievement. The lack of

availability of testing measures for younger children makes all of the available studies, with one

exception (Gaihre et al., 2014), rely on samples of pupils at the end of their primary/elementary

education (age 10-12). The systematic exclusion of younger children from studies might well

have important consequences for the estimated effects of poor environmental conditions. Chil-

dren?s developing bodies experience significant changes in respiratory, immune and neurological

systems. In addition, learning goals and challenges differ between the age of 4-5 and the age of

10-12, impeding the direct extrapolation of findings from older children to younger children.

Examining the relationship between air quality or temperature and cognitive performance or

health is a challenging task, as there are many confounding factors. The presence of unobserved

school or classroom characteristics that are potentially correlated with indoor conditions is likely

to pollute any estimate on the effect of indoor air quality on health or academic outcomes. Thus,

it is necessary to measure indoor environmental conditions for a large number of classrooms over
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multiple years to let participants be exposed to different indoor environmental conditions while

undertaking comparable tasks. The current literature often highlights the lack of statistical power

in tests due to the low number of observations in their analysis. This is the result of a small

number of individuals in the sample (typically less than 2,500 individuals) and the collection

of one testing outcome per child and subject (e.g. Madureira et al., 2016). The low number

of observations leads to wide confidence intervals, often resulting in a failure to reject the null

hypothesis of deficient climate conditions affecting academic achievement.

Finally, the current literature lacks data on individual health profiles and socio-demographic

characteristics of children. Most studies have access to absence days or gender ratios at the

grade or classroom level only (e.g. Mendell et al., 2015). The lack of individual characteristics

in the analysis hinders the examination of potential heterogeneous effects of climate conditions

on children?s academic achievements. This is critical for the policy recommendations of a study,

since it allows for the identification of specific target groups (e.g. asthmatic kids) and ultimately

advice on more effective interventions or investments (e.g. ventilation system versus heating

system).

For a graphic overview of the existing literature, and to provide a comparison with the re-

search setup of our study, we collected information on the number of measurement days and

number of individuals in all current studies investigating the effects of indoor school environ-

ment on health and/or academic performance (figure 1). Operational limitations typically make

researchers face a tradeoff between measurement time and sample size (i.e. the number of class-

rooms monitored). Over 90 percent of the studies rely on short term measurements (less than

10 days) and not a single study performs analyses on measurement periods longer than 30 days.

Stability in occupancy rates and usage of classrooms within the academic year tend to reduce

variance in environmental conditions in classrooms. However, the changes in ambient condi-

tions (outdoor climate or pollution) and in the built environment (i.e. building modification

or depreciation) create meaningful deviations in environmental conditions over time. Each dot

in figure 1 represents one study, distinguishing between studies that focus on health, academic

performance, or both. For comparison, our own study is depicted in the larger blue dot in the

upper right corner. We note that, since the graph depicts observations days per school year,

whereas our study will cover four consecutive school years, it understates the difference between

our study and the existing literature.
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Figure 1: Current studies on IEQ and cognitive performance in children.

Note: The references of the studies included the graphs are [1] (Bakó-Biró et al., 2012), [2] (Dorizas et al., 2015), [3] (Ferreira
and Cardoso, 2014), [4] (Gaihre et al., 2014), [5] (Haverinen-Shaughnessy et al., 2011),[6] Haverinen-Shaughnessy et al.
(2015), [7] (Hutter et al., 2013), [8] (Kim et al., 2011), [9] (Kolarik et al., 2016), [10] (Mendell et al., 2013, 2015), [11] (Mi
et al., 2006), [12] (Petersen et al., 2016), [13] (Shaughnessy et al., 2006), [14] (Shendell et al., 2004), [15] (Simoni et al.,
2010), [16] , [17] (Stafford, 2015), [18] (Toftum et al., 2015), [19] (Toftum et al., 2015), [20] (Twardella et al., 2012), [21]
(Wang et al., 2015), [22] (Wargocki and Wyon, 2007), [23] (?). For the studies whom the number of students in the sample
are reported (Shaughnessy et al., 2006; Shendell et al., 2004) we consider the average class size to be 25 pupils. The blue
dot represents the study design presented in this paper.

3 Methods

3.1 The elementary education system in the Netherlands

In a typical Dutch elementary school, children attend class from 8:30am until 3:15pm. Children

have the option to consume their lunch at home during the one-hour lunch break or eat their

self-brought lunch at school. The amount of time that children spend in the classroom is second

only to the time they spend in their bedroom, and it generally increases as children progress in

elementary school.

The elementary education in the Netherlands consists of 8 years, from the age of 4 to the

age of 12, being compulsory from the age of 5 only. The education system is ruled under the

principle of ”freedom of education”, where elementary schools are granted a high degree of

autonomy, giving the right to any natural or legal person to set up a school and to organize its

teaching program. At the same time, the central government sets learning objectives and quality

standards that apply to all schools, monitoring school quality and compliance with central rules

and regulations. Nearly all schools participate in the well-developed nationally standardized

assessment system, the Leerling Volg Systeem (LVS), a longitudinal student tracking system

comprised of multiple tests per grade, covering the main knowledge areas and developed by the

Central Institute for Test Development (Centraal Instituut voor Toetsontwikkeling, Cito). The
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tests take place throughout the academic year, with clear testing peaks in January, February

and June. By the end of the primary education, in the 8th grade, Cito’s Entreetoets supports

elementary schools in their recommendations regarding the level of high school education most

suitable for each student.

3.2 Study sample and study design

Our study is designed to monitor the indoor environmental conditions and learning outcomes

in approximately 280 classrooms, covering about 10,000 pupils. The levels of CO2, particles,

temperature, relative humidity, background noise and light intensity of each classroom, as well as

student performance in the sample will be continuously monitored for four consecutive academic

years, starting September 2018.

The 23 schools involved represent a random sample of the schools belonging to an educational

board with 47 schools under management, in the South of the Netherlands. All schools are

situated in an area that is economically slightly deprived, with a rather large proportion of

inhabitants that have a low socioeconomic status. Relatively few children achieve an adequate

starting qualification for the labor market, and a large number of children leave high school

without a certificate (Frontczak et al., 2012). All schools in the sample teach the full range of

grades (i.e. grades 1-8) in their education program. The average amount of classes per school

is 11. The sample is quite heterogeneous with regards to building characteristics. The average

school building in the sample was built in 1987, and the date of construction ranges from 1932

to 2016. All classrooms have internet connection and multimedia boards for teaching practices.

The buildings are also heterogeneous in terms of ventilation system. Approximately half of the

buildings have a ventilation system (52 percent), and 23 percent of the school buildings have a

ventilation system that was installed in the last 5 years.

3.3 Monitoring Environmental Conditions in Classrooms

Environmental conditions in each classroom will be monitored using the Aclima measurement

system (Aclima Inc., San Francisco, CA). Spatially and temporally resolved indoor data is

collected using a sensor network consisting of individual wall-mounted stationary nodes, all

equipped with a number of individual sensor modules. For this study, the nodes will measure

CO2 (ppm), coarse particles (counts/L), temperature (C), relative humidity, light intensity (lux),

and sound (dBA). The node captures and transmits all data to a cloud-based server, where the

data is processed, analysed, and stored. See Table 1 for the sensor performance characteristics.

The frequency of raw data collection ranges from 1 to 30 seconds. However, we implement a

smoothing protocol that aggregates all measures at the 1-minute level, using moving averages.

With the exception of coarse particle counts, that will be aggregated at 15-minute intervals.
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Table 1: Sensor Characteristics

Sensing Sample
method Accuracy Resolution frequency

Carbon Dioxide Non-dispersive 50 ppm + 3% 10 ppm 17 sec
(CO2) infrared
Coarse Particles Optical, 250 count/L + 20% 250 count/L 30 sec
(PM) scattered light
Relative Humidity Complementary metal 0,04 0.3% 5 sec
(rh) oxide semiconductor
Light Photodiode 3 lux 1 sec
(lux)
Temperature Solid state 1 C 0.2 C 1 sec
(C) integrated circuit
Sound (dB) Back electret 5 dBA 3 dBA 1 sec

An important channel for indoor environmental quality on place and occupant performance

is the perceived quality of the environment. To explore the level of comfort at different schools

and classrooms, we assess (1) teachers and (2) students by using annual questionnaires. For

teachers, we use the Occupant Indoor Environmental Quality Survey developed by the Center

for the Built Environment at the University of California, Berkeley (Madureira et al., 2016).

The questionnaire includes questions about thermal comfort, perceived air quality, and noise.

For students, we ask a cohort of 1,000 pupils, starting at age 10 (all pupils in group 6 in the

sample), to report annually on their perceptions of odor intensity and acceptability by using a

series of visual scales, previously validated in the literature (see Madureira et al., 2016).

In addition, we also retrieve daily information ambient temperature from the Global Histor-

ical Climatology Network (GHCN) of the National Oceanic and Atmospheric Administration

(NOAA) and outdoor levels or air pollution from the Dutch National Air Quality Monitoring

Network (LML).

3.4 Student performance

We exploit an existing infrastructure that tracks student performance, based on standardized

tests (the LVS tracking system), regular evaluations by the teachers, the Cito final test, student

and teacher attendance, student socio-demographics and their attitudes toward the school (see

Table 2 for an overview of the data). This dataset is part of OnderwijsMonitor Limburg (OML)

within the Educational Agenda Limburg that monitors educational development and teacher

quality (See Borghans et al. (2015b,a) and Willeboordse et al. (2016a) for previous studies using

this data).

In our sample of schools, the dataset contains a total of approximately 36,000 standardized
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tests per year (6 tests per child). Each child takes an average of 2 tests per year per subject.

The tests comprise a wide variation of educational areas, such as reading, math, language and

foreign language tasks (English). The dataset includes individual identifiers for each child in

the dataset, allowing to follow children over the entire study period, and to explore changes in

the test scores of a child. The panel structure of the dataset also allows for the exploitation of

variation in environmental conditions, linking it to test scores at the individual level. In addition,

the final dataset will include accurate information of the time and place of each of the tests in

the sample, enabling differentiation between contemporaneous effects (i.e. at the time of testing)

and permanent effects (learning).

Table 2: Student performance assessments

National tests School tests Study tests

Cito LVS tracking tests Grades (four times/year) Self−efficacy pupils
groups 3−8
Cito final test group 7 School advice on secondary Strengths and difficulties

education questionnaire
Actual ongoing education

3.5 Individual Characteristics

Individual Health Outcomes

We gather data on health outcomes for children in the sample from multiple sources. Annual

absence days of children will be collected by OML and the registration records by the educa-

tional board. For students enrolled in five sample schools, we will complement information on the

student profile with general health measures of the child, combining multiple sources. All health

outcome measures origin from an already existing longitudinal study on health and lifestyle of

pupils. See Willeboordse et al. (2016b) for a detailed description of all general health measures.

Information on general health outcomes will be derived from an online parental questionnaire

covering: disease status since birth, hospital admissions (number and duration), healthcare visits

(number), and medication use in the previous 12 months (See Appendix A, B and C for the

English translation of the exact questions in the questionnaire.). Anthropometric measurements,

including height, weight, hip, and weight circumference will be objectively and separately col-

lected for all children. Information on birth weight and additional information on disease status

will be collected via the Regional Public Health Services (GGD).

Household socio-economic characteristics

In addition to academic and health outcomes, we gather a complete profile of household

socio-economic characteristics of the pupil. These factors have been shown to be important
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Table 3: Health Outcomes

Health Measure Source

Birthweight (subsample of 5 schools) Regional public health services (GGD)
Disease status, hospital admissions, medicine Parental questionnaire and GGD
use, healthcare visits (subsample of 5 schools)
Anthropometrics (subsample of 5 schools) Objective measurement in children
Absence days Onderwijs Monitor Limburg (OML)
Frequency of pupil absence and sick leave Educational board

mediators on the link between pupil health and academic achievement (Currie, 2009). This

information is available for every pupil in the dataset and contains information on parental

income, occupational status, education, and parental health.

3.6 Medical ethical approval

No personal data will be collected for this study, therefore Medical Ethical Approval is not

needed. Data on student performance and health stems from an already existing data infras-

tructure, respectively OML and the study entitled ’The Healthy primary School of the Future’

(HPSF). Medical Ethical Approval for HPSF was waived by the Medical Ethical Committee

of Zuyderland, Heerlen (METC 14-N-142). Data collection from GGD-ZL is executed by re-

searchers of HPSF, this procedure has been fully approved by the Medical Ethical Committee

of Zuyderland. The questionnaires on level of comfort will be filled in anonymously by students

and teachers. All data records will be assured anonymized and confidentially according to the

Dutch data protection law.

4 Pilot Study

In this section, we present the results of a pilot study, carried out in multiple classrooms in two

schools, for a complete academic year (2016-2017). The aim of the pilot study is to test the

spatial and time series variation of indoor environmental conditions in schools. We first describe

the characteristics of the schools selected for the pilot, and we then present a pilot test on the

number of sensors per classroom needed to accurately measure indoor environment accurately.

In the second pilot test, the cross-classroom variation in indoor environmental conditions is

tested over the course of an academic year.

Two schools with heterogenous physical characteristics were selected for the pilot, with the

aim to maximize differences in environmental conditions. Pilot School 1 represents a relatively

new school, with a modern ventilation system in a rural area. Pilot School 2 is a school built over

20 years ago, with a mechanical ventilation system that initially did not cover the classrooms,
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but that was redesigned to do so during our pilot study. This school is located in an urban area.

The location and building characteristics of the schools are thus expected to generate differences

in indoor environmental parameters. In the pilot schools none of the teachers have control over

the temperature in their classrooms.

Table 4: Student performance assessments

Pilot School 1 Pilot School 2

Construction Year 2010 1992
Ventilation in classrooms Yes No
Area Characteristics Rural Urban
Control Over Temperature No No

4.1 Pilot Test 1: Differences in environmental conditions within and across
classrooms

The first phase of the pilot study is aimed at exploring the differences in environmental conditions

within classrooms. For this purpose, we deployed 3 sensors in four classrooms (12 sensors in total)

monitored for a period of 5 months (August 2016-January 2017). The sensors were deployed at

the same height (1.50 meters) and in three separate locations covering the perimeter of the

classrooms. 1 The height was chosen following current guidelines for air quality monitoring at

schools (WHO, 2011). In one of the classrooms at Pilot School 2, we further investigated the

differences in measurements at different heights (1.50 versus 2.00 meters) and the results show

high correlations between the measurements of the sensor mounted at 2 meters versus the other

two sensors installed in the same classroom.

Figure 2 presents the Pearson correlation coefficients between the sensors and respectively

CO2, coarse particles and temperature for the first phase of the pilot study. The results indicate

that the correlations for CO2, coarse particles and temperature between the three sensors within

one classroom are on all occasions very high (over 0.98). Correlations of indoor environmental

metrics are always higher between the sensors within a classroom than with sensor measurements

in different classrooms in a school. Especially the variation in indoor temperature and CO2 levels

is highly heterogenous between classrooms, as can be observed from figure 2. The correlation

between sensors in different classrooms in the same schools is higher in Pilot School 1, the

newly constructed school with a mechanical ventilation system, suggesting a higher degree of

homogeneity in the school.

These graphs provide important information on the heterogeneity of indoor environmental

conditions within a room, and the heterogeneity across rooms. From a measurement perspective
1Photos of sampling locations in the classrooms of the pilot schools are shown in Appendix.
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the results suggest that there is unique information to obtain from each node, thus reinforcing

the need to measure each room individually. However, deploying more than one sensor per room

seems to be redundant.

Figure 2: Correlation in CO2, coarse particles and temperature within and across classrooms.

Note: The figure presents the Pearson correlation matrixes of the daily average of temperature, coarse particles (PN) and
peaks of CO2, measured at different locations within 4 classrooms: 2 classrooms in a relatively new school (”School 1”)
and 2 classrooms in an older one (”School 2”).

4.2 Pilot Test 2: Time-series variation of sensors over the academic year

The second part of the pilot study aims to test the variation in indoor environmental conditions

in the selected sample of classrooms over the period of one academic year. For this study, 12

sensors were placed in 10 classrooms and one computer room, divided over the two pilot schools

described above. Figure 3 shows the variation in indoor temperature and CO2 levels over the

course of a year for a classroom in Pilot School 1, along with the ambient temperature in the

area of the school. The outdoor temperatures were gathered from the U.S. National Oceanic

and Atmospheric Administration (NOAA) and correspond to the average daily temperatures

measured at the nearby Maastricht Airport weather station. The average daily temperature in

the classroom during learning hours ranges from 19 C to 30 C, with an average of 22 C. The

daily peaks of CO2 increase when the ambient temperature drops, fluctuating around 1,300 ppm

in the cold season and around 1,000 ppm in the warm season.

Compared to Pilot School 1, the variation in indoor temperature and CO2 levels over the

course of a year in Pilot School 2 is quite high, as figure 4 illustrates. The figure highlights that

the average daily temperature in the classroom during learning hours ranges from 19 C to 28 C,

with an average of 21 C. The daily peaks of CO2 again increase when the ambient temperature
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Figure 3: Temperature and CO2 levels over the 2015-2016 academic year in classroom 1 of School
1 (with mechanical ventilation).

drops, fluctuating around 2,000 ppm in the cold season and around 1,000 ppm in the warm

season.

Figure 4: Temperature and CO2 levels over the 2015-2016 academic year in classroom 1 of
School 2 (without mechanical ventilation).

There are significant differences in the levels of CO2 in the cold season, when teachers close

the windows to keep the temperature in the classroom within acceptable levels for teaching. In

the school with a ventilation system (figure 3) the daily peaks of CO2 are on average 700 ppm

lower than in the school without a ventilation system (figure 4). The difference becomes less
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pronounced during the warm season, when teachers in the naturally ventilated school frequently

open the windows. The influence of ambient temperature on indoor temperature is higher in

the summer period for both schools, when the lack of air conditioning even exposes pupils to

temperatures surpassing the (already high) outdoor temperature.

During the academic year, it became apparent that indoor environmental quality is strongly

associated with the status of building conditions and the status of the mechanical ventilation

system. This is illustrated by the effects of a breakdown and modification of a ventilation system

(figures 5 and 6). In January 2017, the ventilation system in Pilot School 1 had to be switched

off for a week due to problems with the engines. In March 2017, half of the engines in the

ventilation system were not working, so the ventilation system worked at half capacity for seven

school days. As a result, the levels of CO2 increased by 50 to 70 percent, and tripled during the

days where the ventilation system was not functioning at all.

Figure 5: Distribution of daily CO2 peaks over the 2016 2017 academic year in Pilot School 1 for
three scenarios in the ventilation system conditions.

Note: The ventilation breakdown period took place in January 2017 and the ?Half-Operational? period took place in March
2017. The fully operational block is computed using the CO2 peaks in January, February, March and April excluding the
days where the ventilation system was not working properly.

We also observed a strong impact of modification of the ventilation system on classroom CO2

levels. In January 2017, the ventilation system in Pilot School 2 was modified to increase its

coverage of the classrooms. The distribution of CO2 levels after the modification was significantly

lower than the distribution before the change, reducing the exposure of children to high levels

of CO2 (figure 6). We did not observe any systematic change in the distribution of the other

IEQ characteristics collected by the sensor (see Appendix C for distribution of coarse particles

and temperature before and after the modification).
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Figure 6: Distribution of daily CO2 peaks in Classroom 1 and Classroom 2 of Pilot School 2 before
and after modification in ventilation system.

5 Conclusions

There is extensive evidence that exposure to poor environmental conditions is associated with

deteriorations in physical health, mental health, and cognitive performance. However, most of

the studies rely on outdoor measurements of environmental conditions and on samples of the

adult population. Scientific evidence on the relationship between indoor environmental condi-

tions and cognitive performance is scant, particularly for children, which arguably have most to

lose from exposure to detrimental condition. From a methodological perspective, the literature

is constrained by small samples, relying on between-subject comparisons rather than within-

subject comparisons, making it hard to establish causality. This paper describes the design of

a longitudinal study in which the environmental conditions of more than 10,000 children will

be monitored during four academic years and will be related to individual measures of aca-

demic performance and health. The study has a robust design to measure indoor environmental

quality in a school setting, using state-of-the-art sensor technology to objectively measure the

environmental conditions at high frequency.

From the first pilot study, we conclude that the exact placement of sensors in a classroom

does not affect the ability of the sensor to accurately measure indoor environmental conditions.

The additional information content from installing multiple sensors, relative to a singular sensor,

to accurately measure indoor environmental quality within a classroom is low. Placement of one

sensor at briefing height provides robust measurements of the indoor environment in a class-

room setting. At the same time, indoor climate conditions differ considerably across classrooms,
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indicating that sensors need to be installed in each individual classroom in a school.

The second pilot study shows that the variation of various indoor environmental quality

characteristics over the course of one academic schoolyear is high. Due to the high variation of

IEQ during the schoolyear, a longitudinal design of at least one academic year is necessary to

robustly measure the impact of indoor environmental quality on health and academic outcomes.

The proposed study will clarify to which degree different environmental characteristics influ-

ence cognitive performance, taking into account the health of pupils. The correct placement of

sensors, the longitudinal design, and the large number of pupils included in the study will add

valuable knowledge to the current literature. If it turns out that indoor environmental quality

is indeed salient for the performance of young children, the next stage will be to design field ex-

periments. By optimizing air, light and sound in classrooms, cognitive performance can possibly

be improved. As changes in indoor environment are often low-cost and easily implementable,

the direct societal and scientific importance of the findings in this study may be substantial.

Indirectly, this study may affect how school buildings are built, managed, and maintained, both

in the Netherlands and across the globe.
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M. Uhl, B. Damberger, P. Tappler, M. Kundi, P. Wallner, and H. Moshammer
(2013): “Semivolatile compounds in schools and their influence on cognitive performance of
children,” International Journal of Occupational Medicine and Environmental Health, 26,
628–635.

Kim, J. L., L. Elfman, G. Wieslander, M. Ferm, K. Torén, and D. Norbäck (2011):
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Appendix A: Respiratory diseases

Table 5: Disease prevalence of children

Child suffered Child suffered My child It has been
this before this during currently has diagnosed by

primary school primary school this disease a doctor

Asthma or chronic bronchitis Yes/No Yes/No Yes/No Yes/No
Hay fever or allergy to dust / Yes/No Yes/No Yes/No Yes/No
animals / medicines
Throat, nose or ear infections Yes/No Yes/No Yes/No Yes/No
Pneumonia Yes/No Yes/No Yes/No Yes/No
Allergy for certain foods Yes/No Yes/No Yes/No Yes/No
(eg. gluten, lactose)
Eczema or other skin Yes/No Yes/No Yes/No Yes/No
conditions
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Appendix B: Medicine Use
Did your child regularly used medicines for the past 12 months?

• Yes

• No

• I’d rather not fill in

If yes: What medication does your child use and what? If necessary, include the package. Home-
opathic remedies do not need to be filled in here. Example: Ventolin, 2 times a month, 100 mg,
2 months used, used for asthma.

Table 6: Medicine usage of children
What medicine How often Dose How many months What did your
did your per day / month? did your child use child use these
child use? this medicine during medicines for?

the previous year?

Medicine 1:

Medicine 2:

Medicine 3:
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Appendix C: Current treatments
Has your child been treated by organizations and/or doctors mentioned below during the last
12 months? You can check multiple options. If you have not been in contact with one of the
organizations, you can check ’no’.

Table 7: Current treatments

Organizations / Number of contacts What was/were the
Assistants in the last 12 months reason(s) for treatment?

General Practitioner ... times
Medical specialist: Pediatrician ... times
Medical specialist: Ophthalmologist ... times
Medical specialist: E.N.T. Specialist ... times
Medical specialist: Orthopedist ... times
Other medical specialist in the hospital. ... times
Please specify:
Speech therapist ... times
Youth Care Office ... times
Youth care or child protection ... times
No
Youth psychologist or psychiatrist ... times
Other, please specify: ... times
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
No, I would rather not fill in
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Appendix D: Pictures Deployment Pilot Study
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Appendix E: Modification Ventilation System Pilot School 2

Figure 7: Average daily counts of Coarse Particles (count/L) in Classroom 1 and Classroom 2 at
Pilot School 2 over the fall of the academic year 2016-2017 before and after the ventilation system
is modified (January 2017).

Figure 8: Average daily Temperature (in C) in Classroom 1 and Classroom 2 at Pilot School 2
over the fall of the academic year 2016-2017 before and after the ventilation system is modified
(January 2017).
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