Intermediated Investment Management in Private Markets: Evidence From Pension Fund Investments in Real Estate^{*}

Aleksandar Andonov Maastricht University

Piet Eichholtz Maastricht University

Nils Kok Maastricht University

April 2014

Abstract

We evaluate the economics of financial intermediation in alternative assets by investigating the allocation and performance of pension fund investments in real estate, the most significant alternative asset class for institutional investors. We document substantial heterogeneity in real estate investment cost and performance, determined by two main factors: mandate size and investment approach. Larger pension funds are more likely to invest in real estate internally, have lower costs, and higher net returns. Smaller pension funds invest primarily in direct real estate through external managers and fund-of-funds, and disregard listed property companies. Overall, we find that delegating real estate investment management to financial intermediaries increases costs and disproportionally reduces returns.

JEL classification: G11, G20, G23.

Keywords: pension fund, real estate, delegated investment management, economies of scale, performance.

^{*}Contact authors via email at a.andonov@maastrichtuniversity.nl, p.eichholtz@maastrichtuniversity.nl and n.kok@maastrichtuniversity.nl. The corresponding author is Nils Kok: phone +31 43 3883838; Tongersestraat 53, Maastricht, 6211LM, Netherlands. We thank CEM Benchmarking Inc. in Toronto for providing us with the CEM database. We are grateful to Keith Ambachtsheer, Rob Bauer, Jeffrey Brown, Martijn Cremers, David Geltner, Will Goetzmann, Frank de Jong, Bill Maher, Paul Mouchakkaa, Paige Mueller, Theo Nijman, Joshua Pollet, David Watkins and Scott Weisbenner as well as seminar participants at the University of Illinois at Urbana-Champaign, University of Connecticut, RERI Meetings, Financial Management Association (FMA), Rotman ICPM (University of Toronto), Cologne Colloquium on Financial Markets (Asset Management), AREUEA International Conference and Netspar Pension Conferences for helpful comments and suggestions. We acknowledge research funding provided by the Real Estate Research Institute (RERI), and by the Rotman International Centre for Pension Management at the Rotman School of Management, University of Toronto (ICPM). Kok is supported by a VENI grant from the Dutch Organization for Scientific Research (NWO).

1 Introduction

Over the last decade, institutional investors have significantly increased their exposure to alternative assets. For instance, pension funds increased their exposure to real estate, private equity, hedge funds, infrastructure and commodities from 9 percent in 1990 to 16 percent in 2010 (Andonov, Bauer, and Cremers, 2012), while university endowment funds increased the allocation to alternative assets from 7 percent in 1989 to 19 percent in 2005 (Brown, Garlappi, and Tiu, 2010). The markets for these private assets are generally less transparent than public markets, and institutional investors face significant fixed costs related to understanding, monitoring and learning about the investments.

To achieve superior returns in private markets, gathering information about specific assets and capitalizing on the acquired informational advantage requires a high level of specialization. This induces the majority of institutional investors to select external investment managers who are specialized in a single asset class, and to delegate portfolio decisions to these specialists (Blake, Rossi, Timmermann, Tonks, and Wermers, 2013). However, delegated investment management can cause misalignment of objectives between institutional investors and their external managers, including loss of diversification, unobservable managerial appetite for risk, and different investment horizons (Binsbergen, Brandt, and Koijen, 2008; Sharpe, 1981).

Institutional investors can prevent these agency conflicts by employing well-qualified specialized asset managers to work in their internal investment divisions, but they face high costs to attract human capital and to collect market information. Indeed, over time pension funds have increased their allocation to external managers and fund-of-funds at the expense of in-house asset managers. Investor movement towards delegated portfolio managers in private market is rational, if financial intermediaries are able to deliver higher returns than internal managers. However, hiring external investment managers does not necessarily deliver better performance (Brown, Goetzmann, and Liang, 2004; Chen, Hong, Jiang, and Kubik, 2013), which may be due to coordination problems and, importantly, higher fees. Indeed, it has been argued that the increased prevalence of delegated asset management is simply due to pension funds shifting responsibility for potentially poor performance to external managers and fund-of-funds (Lakonishok, Shleifer, and Vishny, 1992).

Within delegated asset management, investors can directly select external managers or invest through fund-of-funds. The Stoughton, Wu, and Zechner (2011) financial intermediation model predicts that the variety of intermediation channels by which an asset is sold is related to its performance. The implications of this model can be tested by comparing the performance of investments managed by fund-of-funds, with investments through internal and external managers, thus examining whether underperforming assets are indeed sold indirectly, through intermediaries like fund-of-funds.

We contribute to the literature on financial intermediation and investment performance by providing evidence on the approach of institutional investors towards investing in private assets and how these choices affect portfolio performance. We focus on the allocation and performance of pension funds in real estate investments, which is the most significant alternative asset class for institutional investors.¹ Real estate offers unique possibilities to explore the role of intermediated investment management. First, real estate is the alternative asset class with most heterogeneity in the implemented investment approach. On the one hand, internal management, i.e. direct selection of properties or REITs (without intermediaries), accounts for a significant part of pension fund assets. On the other hand, in addition to delegating investments to external managers, pension funds increasingly use fund-of-funds, which yields an additional layer of intermediation. Internal management is also possible in private equity, but this approach is significantly less common,² whereas for investments in hedge funds, internal management is almost impossible and the choice of investment approach is limited to external managers or fund-of-funds. Second, only in real estate do investors have the option to substitute an illiquid product (direct real estate) with a liquid product (REITs) that generally has comparable long term performance.³

This paper also adds to the recent literature on the performance of private equity mandates, another asset class characterized by illiquidity and a seemingly inefficient market, but accounting for a lower share of pension fund wealth. For example, Lerner, Schoar, and Wongsunwai (2007) analyze whether there are systematic differences in private equity returns and investment strategies across several different classes of institutional investors (limited partners), e.g. banks, corporate and public pension funds, endowments, advisors, and insurance companies. Hochberg and Rauh (2013) extend the analysis of heterogeneity in the performance of private equity investments by institutional investors, documenting that especially public pension funds exhibit substantial home-state bias and underperform with their local investments.⁴

¹For example, all properties in the most widely used U.S. private real estate index, the NCREIF Property Index (representing more than \$315 billion in 2012), have been acquired, at least in part, on behalf of tax-exempt institutional investors – the great majority of which are pension funds. Outside of the U.S., pension funds constitute more than 60 percent of the investors in the IPD U.K. property database (Bond and Mitchell, 2010), the main U.K. private real estate index.

²According to the CEM database, on average, only 11 percent of the private equity investments are managed internally, while in real estate internal investment approach accounts for 19 percent of the assets (http://www.cembenchmarking.com/Default.aspx).

 $^{^{3}}$ Pagliari, Scherer, and Monopoli (2005) document that the return characteristics of direct real estate and listed real estate investment trusts (REITs) are not different after controlling for leverage, property mix and appraisal smoothing.

 $^{^{4}}$ See also Kaplan and Schoar (2005) and Phalippou and Gottschalg (2009) for analysis of private equity fund performance.

We use the CEM dataset, the broadest global database on pension fund investments. This unique database contains data for almost 900 defined benefit pension funds across the world over the 1990-2009 period. The assets under management of these funds exceeded \$4.7 trillion in 2009.⁵ The CEM database provides extensive coverage of both direct real estate investments and REIT holdings. For instance, the aggregate pension fund holdings of private commercial real estate in the database add up to more than \$240 billion in 2009, which represents 30 percent of the aggregate market value of the IPD Global Property Index (and equals the total market value of the U.S. NCREIF Property Index). REIT holdings of pension funds covered by CEM in 2009 equal some \$74 billion, which corresponds to more than 11 percent of the FTSE EPRA/NAREIT Global Index in 2009.

Our results show that about 75 percent of the pension funds in the CEM database invest in real estate, allocating on average 5.36 percent of pension fund assets (average allocations to private equity and hedge funds are 4.00 and 3.23 percent, respectively). Once pension funds decide to invest in real estate, they have to make two choices. First, pension funds have to decide on the real estate investment approach. Funds typically employ three investment approaches: internal management, external management and investing through fund-of-funds. We document that just 19 percent of real estate investments are managed internally by pension funds. Larger pension funds are more likely to invest internally, whereas smaller funds are more likely to rely on intermediaries, investing externally or through fund-of-funds. However, even among the largest quintile of pension funds, with on average \$33 billion in assets under management, only 42 percent of the funds manage direct real estate or REIT portfolios internally. Importantly, pension funds with greater allocation to other alternative asset classes, like private equity and hedge funds, are more likely to invest in real estate through financial intermediaries, suggesting that internal management can be viewed as a more specializing approach.

Second, funds select the investment subcategory: direct real estate investments or investments in REITs. Although listed REITs provide liquid and scalable property exposure, which should make these vehicles attractive to smaller investors, we document that larger funds are in fact more likely to invest in REITs. Allocations to REITs are mostly implemented as complementary investments to the direct real estate holdings of larger pension funds.

The choice of investment subcategory and approach has significant effects on the costs and performance of pension fund investments in real estate. On average, pension funds pay fees of 76 basis points for investments in real estate, which are higher for direct real estate (83 basis

 $^{{}^{5}}$ CEM collects data from pension funds investing in multiple asset classes and the data have been used previously by French (2008) to study the cost of active investing, and by Andonov et al. (2012) to examine the asset allocation, market timing and security selection skills of pension funds.

points) and lower for REITs (41 basis points). Even though our cost figures do not include the performance fees (which are subtracted directly from returns in the CEM database), real estate investment fees are substantially lower than fees for investments in private equity and hedge funds. Phalippou (2009) and Metrick and Yasuda (2010) estimate that the average private equity buyout fund charges fees of more than 7 percent per year (the annual management fee alone is 2 percent of capital commitments). For hedge funds, French (2008) documents that the average annual fee is 4.26 percent of assets (the management fee alone is 1.16 percent) over the 1996-2007 period, and for funds-of-hedge-funds, the average fees are even higher.

We find strong economies of scale in the costs of real estate investments: doubling the size of a real estate mandate reduces the annual costs by 32 basis points. Importantly, we document that larger pension funds are not only able to organize internal mandates more efficiently, but also negotiate lower fees with external investment managers. Financial intermediation through external management and fund-of-funds considerably increases the overall investment costs. A fund that invests internally has 21 basis points lower investment costs than a fund that invests through external managers. Investing through fund-of-funds increases the costs by 122 basis points.

On a net benchmark-adjusted basis, we find that pension funds generally meet the thresholds of their benchmarks. However, there is substantial heterogeneity in the investment returns of pension fund allocations to real estate. We document that larger funds obtain higher net benchmark-adjusted returns: doubling the size of real estate holdings increases returns by 32 to 43 basis points. We observe these economies of scale both among REIT investments and direct real estate investments. In addition, larger funds have a better performance in their internal as well as external mandates. These results suggest that larger pension funds not only invest more efficiently internally, but can also select and retain better external managers.

The investment approach has an even stronger effect on performance. When controlling for size and costs, pension funds investing through internal asset management divisions obtain 102 basis points higher net benchmark-adjusted returns than funds that delegate the asset management to external managers. Moreover, investing through fund-of-funds results in a 202 basis points lower return. Overall, financial intermediation through externally delegated asset management in real estate investments results in significant underperformance.

Our results on the effect of investment approach on performance in alternative assets are in line with the theoretical model of financial intermediation by Stoughton et al. (2011), where only high net-worth institutions invest directly and achieve superior returns, while underperforming assets are only sold indirectly, through external managers and fund-of-funds. The findings in this paper also complement the empirical evidence on the agency conflicts and inferior investment performance resulting from intermediation among equity mutual funds (see, for example, Bergstresser, Chalmers, and Tufano, 2009; Chen, Hong, Jiang, and Kubik, 2013).

The economies of scale in pension fund performance in real estate are contrasting the diseconomies of scale that have been documented for equity mutual funds (Chen, Hong, Huang, and Kubik, 2004), but are in line with the evidence on private equity funds and hedge funds. Kaplan and Schoar (2005) document a concave relation between fund size and performance of private equity funds, whereas Agarwal, Nanda, and Ray (2013) find that larger institutions invest more directly instead of using funds of hedge funds, and outperform the smaller institutions.

Our findings have some general implications for the investment management industry. In line with Lakonishok et al. (1992) and Goyal and Wahal (2008) we conclude that pension funds should avoid extended intermediation chains, like fund-of-funds, and could benefit from considering the full range of investment approaches. Especially larger investors should evaluate the possibility of investing internally. The findings also show that portfolio size provides negotiating power with respect to cost and access to better investment opportunities. Smaller pension funds should therefore reconsider their approach to real estate investments, substituting direct holdings with REITs and specializing in one alternative asset class, instead of simultaneously investing in multiple alternative assets.

The remainder of this paper is organized as follows. The next section describes the institutional marketplace for investments in alternative assets. Section 3 introduces the dataset used in this paper. Section 4 investigates the choices pension funds make in their real estate investments, and addresses the use of internal versus external investments, the use of fund-of-funds and REITs, and the pension fund characteristics related to these choices. Section 5 studies the investment costs that pension funds face when choosing different investment approaches in real estate. Section 6 focuses on the performance of the real estate holdings, investigating the relation between benchmark-adjusted returns of pension funds and their investment choices and size, and determining performance persistence. The paper ends with a conclusion and discussion.

2 How institutional investors invest in real estate

Thus far, academic research has focused predominantly on the risk-return characteristics of real estate in a mixed-asset portfolio. Compared to typical portfolio models, predicting about 10-20 percent allocations to real estate,⁶ institutional investors generally have more modest allocations to private and public real estate investments. In this section, we explain the institutional

 $^{^{6}}$ See for example: Friedman (1971) and Kallberg, Liu, and Greig (1996).

marketplace and the investment process for institutional investors considering an allocation to real estate. Figure 1 provides a stylized chart of the decision process and financial intermediation layers that investors face when investing in real estate.

The first decision is whether an institutional investor includes real estate in the strategic asset allocation. Institutional investors seeking exposure to real estate can invest in debt-type assets and equity-type assets. Debt-type assets include private commercial real estate debt (whole loans or mortgages) and commercial mortgage-backed securities. The debt real estate assets are usually part of a broader fixed income portfolio and are not the focus of this paper. Our analysis covers real estate equity investments, which are generally organized as separate mandates in the pension fund portfolio. There are two subcategories of real estate equity assets: (1) direct (private) commercial real estate and (2) listed (public) real estate equity, in many countries structured as real estate investment trusts (REITs), or an equivalent legal structure.

After deciding to invest in real estate directly, through REITs, or using a combination, a pension fund selects an investment approach. Investing in direct (private) real estate can be executed internally or can be outsourced to third-party fund managers. If a fund decides to invest in direct real estate internally, it typically establishes a separate or "at-arms-length" division.⁷ When outsourcing the investment decision, institutional investors can directly select the external managers (funds) or invest via fund-of-funds.⁸ In case of the latter, the fund-of-fund manager selects the external managers (funds), who then acquire the assets.

Investing in public real estate securities requires selection of REITs, which can be outsourced to external investment managers, or can be executed internally by the pension fund. REIT investments can also be classified as passive if they replicate a broad capital market benchmark (e.g., the FTSE/NAREIT Index) or are dedicated to matching a specific set of liabilities (i.e., if REIT investments are part of a strategic asset allocation designed to match fund-specific liabilities).

Overall, an institutional investor directly trade properties only if that institution internally invests in direct real estate. External investing in direct real estate and REITs creates additional intermediation layers between the pension fund and the assets. Figure 1 illustrates these additional layers. The involvement of third-party intermediaries potentially creates principal-agent conflicts and increases the investment costs, as each intermediation layer leads to additional fees. However,

⁷Internal investing means that the buy-sell decisions for the individual properties are made within the organization (including wholly-owned subsidiaries).

⁸External investing also incorporates real estate limited partnerships. The limited partnerships are investments in real estate funds which focus on active management of properties, ranging from moderate reposition or releasing of properties to development or extensive redevelopment. These funds typically have a fixed life span during which properties are acquired, actively managed and then sold. This category includes value added and opportunistic partnerships.

not all approaches that delegate investments create similar agency problems. REITs, for example, are listed on the stock market, which not only increases transparency and liquidity, but also lowers investment costs. In addition, the institutional design of REITs may reduce agency conflicts, for example by mandatory dividend distributions (Bauer, Eichholtz, and Kok, 2010). External investing in direct real estate demands strong monitoring capacities from the investor, especially in the absence of a stock market to mitigate potential agency conflicts. In addition, the costs for external investments in private real estate are typically higher, because they incorporate management fees as well as performance fees. Investing through fund-of-funds adds another layer of both management and performance fees. Hence, when delegating investments in private real estate assets, pension funds need more skills as compared to investments in public equities and fixed income, in order to select and monitor the external parties. See Lakonishok et al. (1992), Goyal and Wahal (2008) and Stoughton et al. (2011) for an elaborate discussion of agency problems in the investment management industry.

3 Data

3.1 The CEM database

We use the defined benefit pension fund data collected by CEM Benchmarking Inc. Pension funds included in the CEM database had more than \$4.66 trillion of assets under management in 2009 and covered around 35 percent of global defined benefit pension fund assets (which is also more than 20 percent of total global pension fund assets).⁹ Over the 1990-2009 period, the U.S. pension funds included in the dataset controlled more than 40 percent of the total assets under management by the U.S. defined benefit pension fund sector. Canadian pension funds included in the CEM database held approximately 80-90 percent of the total assets under management by Canadian pension funds. The CEM database also covers a smaller percentage of, mostly larger, European, Australian and New Zealand pension funds. Table 1 presents the number of pension funds in the CEM database, the number of funds investing in real estate and the average size of these funds. To our knowledge, this is the broadest global database on pension fund asset allocation and performance available for academic research.

The CEM database contains detailed information on each fund's annual asset allocation decisions, self-declared benchmarks for each asset class, and precise cost structure and performance data for all separate asset classes and their benchmarks. While CEM collects data from pension funds investing in multiple asset classes, we solely focus on the real estate allocations in this

⁹The comparison is based on the Towers Watson Global Pension Assets Study 2010 (http://www.towerswatson.com/en-IE/Insights/IC-Types/Survey-Research-Results/2010/02/Global-Pension-Asset-Study-2010).

paper. In the data, real estate includes assets invested in direct real estate holdings, segregated real estate holdings, real estate limited partnerships and real estate investment trusts (REITs).¹⁰

The CEM database provides a broad and complete perspective on the choices and outcomes of pension fund real estate allocations. Using data at the pension fund level rather than realestate-only datasets (like those offered by NCREIF, IPD, or NAREIT) provides some unique insights into the allocation decisions, costs and returns of real estate investments. First, pension fund returns reflect the costs of real-life constraints involved in real estate investments, such as commitment periods and delays on the withdrawal of capital that external parties impose. Second, pension fund returns reflect the costs of managing a portfolio of underlying real estate investments in private, public or both real estate subcategories, as the returns are reported net of an additional layer of fees. Third, the CEM data incorporates returns in both public and private real estate investments, taking into account the time trend in weights assigned to both subcategories. Focusing on either NCREIF or NAREIT data does not reflect the overall real estate portfolio of an institutional investor, and does not provide insight into the allocation choices that institutional investors face within their real estate allocation.

As reporting to CEM is voluntary, the data is potentially vulnerable to self-reporting bias. Andonov et al. (2012) address the self-reporting issue by constructing a Cox proportional hazard model. The authors test whether the decision of a particular fund to exit the database is related to its returns (from all asset classes), costs or size. The results show that the database does not suffer from self-reporting bias with respect to costs and returns, though larger funds are more likely to survive in the CEM database.¹¹

Table 1 shows that, on average, 75.6 percent of the pension funds in the CEM database invest in real estate. In Europe and Australia/New Zealand this percentage is higher, which may be due to the database covering fewer, mostly large funds. In Canada, the percentage of funds investing in real estate decreases over time, from 75.5 percent in 1990 to 59.8 percent in 2009.

During the 1990-2009 period, pension fund real estate holdings increased substantially and their total value amounted to more than \$320 billion in 2009. In line with Pagliari et al. (2005) we find that pension funds favor private real estate investments over REITs. In 2009, pension fund holdings in direct real estate were more than \$240 billion and the holdings in REITs were around \$74 billion.¹²

¹⁰REIT investments are reported separately in the CEM database – CEM explicitly asks pension funds to split REIT investments from the small cap equity mandate. Some pension funds may not be able to filter out REITs from passive index investments, and our results may thus slightly understate actual allocations to REITs.

¹¹Bauer, Cremers, and Frehen (2010) also address the self-reporting bias by matching the CEM data with the Compustat SFAS data. They test whether the decision to stop reporting is related to the overall fund performance, but the results indicate that there is no evidence of a self-reporting bias related to performance in the exiting and entering years.

¹²A minor part of pension fund real estate holdings is classified as "other real assets", which captures investments

3.2 Real estate allocation and investment approach

Including all pension funds in the database, real estate represents on average 3.9 percent of pension fund assets. This compares to 1.9 percent allocation to private equity and 0.7 percent allocation to hedge funds. When we focus just on pension funds investing in real estate, these funds allocate, on average, 5.4 percent of their assets to real estate. Figure 2 shows that real estate assets as a percentage of total pension fund total assets were higher at the beginning of the sample period and picked up again after 2000. Real estate investments represented 6.9 percent of the total assets by 2009.

Panel A of Table 2 shows that there is substantial variation in the allocation to real estate assets across regions. Fund size and geography are important determinants of this heterogeneity. European and Australian/New Zealand funds are substantially larger and their real estate holdings, in dollar terms, are more significant than the holdings of U.S. and Canadian funds. In Panel C of Table 2, we observe the size of the real estate investments by subcategory. The size of REIT mandates is comparable to the size of direct real estate mandates, but the number of pension funds that invest in direct real estate is substantially higher than the number of funds that invest in REITs. Figure 3 Panel A shows that REITs gained popularity after 1997 and make up about 20 percent of the overall real estate holdings, on average.

Pension funds implement three main investment approaches within their real estate allocation: internal management, external management and investing via fund-of-funds. In Figure 3 Panel B we observe that pension funds have some 80 percent of their assets managed externally, with little variation over time. Interestingly, the allocation to internal mandates has decreased from 22.4 percent in 1990 to 15.6 percent in 2009, due to an increased allocation to fund-of-funds. The percentage allocation to fund-of-funds has increased from zero in 1990 to 5.3 percent in 2009, mainly at the expense of internal, not external mandates. Even though the vast majority of funds use external management, Panel D of Table 2 shows that the dollar value of internal mandates is substantially larger than the value of external mandates.

Table 3 shows more descriptive statistics regarding pension fund investment approaches in real estate. In Panel A, we document that the percentage of internal management is lowest among U.S. funds (7.6 percent). Canadian funds, even though they are significantly smaller than U.S. funds, allocate 35.6 percent of their real estate investments through internal mandates. European and Australian/New Zealand funds have higher allocations through internal mandates as well. Investments in fund-of-funds are mainly implemented by U.S. and European pension

that could not be classified as direct real estate or REITs. For instance, a building owned by the pension fund and used as office space by the fund, but also partially leased to other tenants for a rent, will be classified as such. Other real assets also capture investments in raw land.

funds.

Panel B of Table 3 shows that pension funds are more likely to invest internally in REITs rather than in direct real estate: the average allocation to internal mandates is 45.3 percent among REITs, compared to 16.8 percent among direct real estate investments.

Passive management in real estate is not really possible, except investments held through REITs. Investments are classified as passive in the CEM data if they replicate a broad capital market benchmark (like the FTSE/NAREIT Index) or match a specific set of liabilities, i.e., if they are part of a strategic asset allocation based on the pension fund liabilities. On the basis of that definition, the vast majority of the REIT investments are managed actively (94 percent) and there are very few pension funds that passively invest in REITs.

3.3 Real estate investment costs

In this subsection, we provide descriptive statistics regarding the level of overall real estate investment costs, the differences in costs between REITs and direct real estate, and the role of investment approach and size as determinants of cost differences. The CEM database contains detailed information on the investment costs of pension funds. Internal investment costs include compensation and benefits of employees managing internal portfolios and support staff, related research expenses and allocated overhead costs. In the CEM database, external investment costs capture the management fees paid to investment consultants and external money managers. The performance fees, carried interest and rebates¹³ are directly subtracted from the returns and are not incorporated in the cost figures. External investments costs also include costs for internal staff whose sole responsibility is overseeing the external investments in real estate assets. Similarly, for fund-of-funds, cost figures capture the base management fee paid to both the fund-of-funds manager and the underlying managers, but they do not include performance fees and carried interest on either layer.

Table 4 provides the summary statistics of real estate investment costs per region. Pension funds pay fees of about 76 basis points for real estate investments. We find that U.S. pension funds have higher real estate investment costs than funds from other regions: the average costs of U.S. pension funds amount to 91 basis points, which is about twice the percentage that their foreign peers are paying. Canadian funds pay 56 basis points, European funds pay 38 basis points and Australian/New Zealand funds pay 45 basis points for their real estate investments. Figure 5 shows that these cost differences are consistent during the 1990-2009 period. Moreover,

¹³Carried interest is a fee that is a portion of returns exceeding a hurdle rate. Rebates are the limited partners' share of certain fee income realized by the general partner in connection with the fund, such as fees for break-up, monitoring and funding.

U.S. pension funds have higher costs for investing in both REITs (Panel B) and direct real estate (Panel C). The three panels of Figure 5 suggest that there are no particular time patterns in REIT investment costs, but direct real estate investment costs have increased since 2002. The increasing costs in direct real estate are mostly due to the increasing allocations to fund-of-funds, which is the most expensive approach to invest in real estate.

Cost summary statistics for subcategories are presented in Panel B of Table 4. The average costs for investing in direct real estate are 83 basis points and are about double the costs for investing in REITs (41 basis points). Internal investing in REITs and internal direct selection of properties are associated with substantially lower costs than the external investment approaches. Furthermore, within direct real estate investments, limited partnerships and fund-of-funds yield substantially higher costs than other ways of gaining real estate exposure: 143 and 183 basis points, respectively. Panel C of Table 4 shows that costs for all external mandates are 86 basis points, on average, as compared to just 26 basis points for all internal mandates, on average.¹⁴

Overall, the descriptives indicate that the selected subcategories and investment approach strongly influence the overall level of real estate investment costs. But of course, these nonparametric comparisons are not conclusive: for example, U.S. pension funds have a low allocation to internal mandates (just 7.6 percent) as compared to funds from other regions, which may explain their higher costs.

4 Pension fund characteristics and real estate investments

In this section, we study the two main investment decisions presented in Figure 1 for the institutional investors with an existing real estate allocation. First, we investigate which pension fund characteristics influence the choice of real estate subcategories. Second, we examine which investment approach pension funds implement in their allocation to real estate. We estimate the following logit model:

$$Pr(y_{i,t} = 1|X) = F(\beta_1 FundSize_{i,t} + \beta_2 Alter_{i,t} + \beta_3 PT_i + \beta_4 Region_i + \beta_5 YD_t + v_{i,t})$$
(1)

where F is a logit function taking on values strictly between zero and one, and $y_{i,t}$ is a binary dependent variable. For example, the dependent binary variable $y_{i,t}$ is 1 if pension fund *i* invests internally in real estate in year *t* and 0 otherwise. We model the probabilities as a function of

¹⁴Costs for all external mandates are calculated as a weighted average of costs for external mandates in REITs, external mandates in direct real estate, limited partnerships in direct real estate and external mandates in other real assets. Costs for all internal mandates are also a weighted average of internal investment costs across all subcategories. Investments in direct real estate via fund-of-funds are the only category from Panel B not incorporated in Panel C, because we analyze the fund-of-funds as a separate investment approach.

pension fund characteristics (X), focusing on total fund size (FundSize) and the allocation to other alternative asset classes (Alter) of fund *i* in year *t*. FundSize is the natural logarithm of the dollar value of the pension fund assets under management. The Alter variable captures the asset allocation to private equity, hedge funds, infrastructure, tactical asset allocation mandates, commodities and natural resources. We control for plan type (PT), i.e., whether the pension plan is public, corporate or other. We also control for regional effects, include year dummies (YD) and we cluster the standard errors by pension funds, allowing for intragroup correlation.

Table 5 shows the results. In Panel A, we analyze which characteristics determine whether a pension fund invests only in direct real estate, only in REITs, or simultaneously in both direct real estate and REITs. The dependent binary variable is 1 if a fund has direct real estate holdings only and 0 otherwise. We find that smaller pension funds are more likely to invest in direct real estate only but not in REITs, although REITs provide easy and low-scale property exposure, which should make them especially attractive to smaller investors. A one unit increase in the logarithm of assets under management (i.e., doubling the fund size) decreases the probability that a pension fund invests only in direct real estate by 4.0 to 5.8 percent. Moreover, pension funds with higher allocations to other alternative assets have a higher probability to invest exclusively in real estate directly. For example, the probability to invest in direct real estate only for pension funds that have no allocation to other alternative assets is 79.8 percent. This probability increases to 83.3 percent for funds that have at least 10 percent of assets allocated to other alternative asset classes. Based on the regional dummies, European pension funds are less likely to invest in direct real estate than their U.S. counterparts, whereas Canadian funds are more likely to invest in direct real estate only.

The probability to invest in direct real estate, given that a pension fund decides to invest in real estate, is close to 100 percent and the percentage of funds investing only in REITs but not in direct real estate is very low. This implies that REITs are typically incorporated in a portfolio of larger pension funds as complementary to existing direct real estate exposure. Indeed, a one unit increase in the logarithm of assets under management increases the probability that a pension fund invests simultaneously in both REITs and direct real estate by 4.1 to 5.3 percent.¹⁵

Summarizing, smaller funds are less likely to invest in REITs, but not in direct real estate. This finding is surprising, since we document later in this paper that investing in private real estate is more expensive. Moreover, direct real estate investments are less liquid and require more monitoring skills, because of the increased potential for agency conflicts following from asymmetric information problems. In addition, institutional investors with larger allocations to

¹⁵Our results are in line with Ciochetti, Craft, and Shilling (2002), who document that the largest pension plans invest more in REITs.

other alternative assets are more likely to invest in direct real estate.

Table 5 Panel B presents the analysis of the characteristics which determine whether a pension fund invests internally, externally or through fund-of-funds. The dependent binary variable is 0 if a fund does not invest in real estate internally and 1 otherwise. In the other specifications, the dependent variable reflects external management and fund-of-funds investments, respectively.

In line with expectations, larger pension funds are more likely to invest internally. A one unit increase in the logarithm of assets (i.e., doubling the fund size) increases the probability that a pension fund invests internally by 10 percent. Smaller funds are more likely to delegate investment management by investing externally and through fund-of-funds. A one unit increase in the log size decreases the probability that a pension fund invests externally by 2.6 percent. Furthermore, the allocation to other alternative assets is significantly and positively related to the probability to externally invest in real estate. The marginal effect of allocations to alternatives estimated at means indicates that a 10 percent increase in the allocation to alternatives increases the probability of external investing in real estate by 5.1 percent. Importantly, even after controlling for size, investments in other alternative asset classes and allocation to REITs, Canadian and European pension funds are significantly more likely to invest internally than U.S. pension funds.

We also estimate the relation between pension fund characteristics and real estate investments using Tobit regressions rather than logit models. In these regressions, instead of dummy variables, the dependent variables are the percentage allocated to one real estate subcategory or investment approach, left-censored at 0 and right-censored at 1. The Tobit regressions deliver the same conclusions as the logit regressions.

Since pension funds can simultaneously invest via more investment approaches, Figure 4 analyzes further the relation between pension fund size and investment approach. We split the funds into quintiles based on their size and calculate the percentage of funds selecting a particular combination of investment approaches. The majority of funds across all size quintiles invest only externally in real estate. Among the smaller quintiles, this holds for more than 80 percent of the funds. Additionally, only pension funds in the smaller quintiles invest exclusively through fund-of-funds. As we move from the smallest to the largest quintile, the percentage of pension funds investing internally (only internally or simultaneously internally and externally) is increasing. However, even among the largest quintile, some 57 percent of the funds do not manage properties or REITs internally.

Our results indicate that larger funds are more likely to invest internally, but a minority of the smallest funds also take that approach. In the smallest quintile, about 13.2 percent of funds decide to invest internally. Internal management requires devoting sufficient resources to establish an internal real estate department or an "at-arms-length" operating division. Establishing such an internal department for direct selection of properties or REITs is costly and can be regarded as a more long-term commitment. In line with this statement, we observe that funds with a larger allocation to other alternative asset classes are more likely to invest externally. This positive relation suggests that especially external real estate mandates are part of a broader portfolio of alternatives. On the other hand, when a pension fund decides to invest in real estate internally, it is likely to devote significant organizational resources and to specialize in real estate for a longer period, rather than to invest in a broader portfolio of alternatives.

5 The costs of pension fund real estate investments

In this section, we analyze the relation between real estate investment costs, and investment approach and mandate size. To disentangle the effects of real estate portfolio size, allocation to subcategories and investment approach, we estimate pooled panel regressions with year and regional, or fund-fixed effects:

$$C_{i,t} = \gamma_0 + \gamma_1 Mandate_{i,t} + \gamma_2 InvApproach_{i,t} + \gamma_3 YD_t + \gamma_4 FE_i + u_{i,t}, \quad t = 1, 2, ..., 20$$
(2)

where $C_{i,t}$ refers to the investment costs, FE_i captures regional or fund-fixed effects, YD_t refers to year dummies and $u_{i,t}$ are idiosyncratic errors. *Mandate* is the log of the dollar value of the real estate investment portfolio, and *InvApproach* refers to the percentage allocation to external managers, fund of funds, etcetera.

Table 6 presents the results of the analysis. Regressions for the pooled sample of all funds indicate that pension funds allocating more assets to real estate realize strong scale advantages in their investment costs. For the full sample, a one unit increase in the log of the real estate mandate (i.e., doubling the mandate size) reduces the costs by 32 basis points, even when controlling for investment approach, year and fund-fixed effects. Our results also indicate that allocations to external investment managers and fund-of-funds significantly increase the overall investment costs. A pension fund that delegates the asset management to external managers has 21 basis points higher investment costs than a fund that invests internally in real estate. Investing through fund-of-funds would increase the costs by 122 basis points as compared to internal management.

When we split the sample into regions, we still document strong economies of scale among U.S. and Canadian funds. For Europe and Australia/New Zealand, the log of real estate assets under management is insignificant, which may be due to the smaller sample size and the fact that funds are generally very large. (The size of the minimum allocation to real estate in Europe and Australia/New Zealand is equal to the median real estate investment mandate of U.S. and Canadian funds.) The observed scale advantages are strongest among U.S. funds, where a one unit increase in the log of real estate holdings reduces the investment cost by 42 basis points. Greater allocation to external mandates and fund-of-funds remain positively related to costs in the regional regression results.

In Panel B of Table 6 we investigate the importance of size and investment approach in explaining the costs of investments in REITs and direct real estate. In the regressions with region and year-fixed effects, the size coefficient is significantly negatively related to investment costs for both subcategories.¹⁶ Controlling for investment approach also explains part of the heterogeneity in investment costs. The percentage of assets managed externally is positively related to the costs associated with REIT investments. Similarly, the percentage of assets invested in external mandates, fund-of-funds and limited partnerships result in substantially higher costs for direct real estate investments.

Table 6 Panel C shows that larger pension funds have lower costs in all three investment approaches: internal, external and fund-of-funds investments. The magnitude of the economies of scale is much stronger for external mandates, where a one unit increase in the log of assets managed externally reduces the costs by 35 basis points. For internal costs, a one unit increase in the log of internally managed assets reduces the internal costs by 7 basis points.¹⁷ These findings suggest that larger funds not only organize internal mandates more efficiently, but also negotiate lower fees for their external investments in real estate. This points at bargaining power with external asset managers.

Even after controlling for size and investment approach, we find that U.S. pension funds have costs that are 28 to 41 basis points higher compared to pension funds from other regions. Results in Panel C indicate that the higher costs of U.S. pension funds can be attributed chiefly to their external mandates, whereas their costs for internal investing are similar to those of pension funds from other regions. In addition, the results in Panel B suggest that U.S. funds overpay mainly for their mandates in direct real estate. The higher costs of U.S. funds for external investments in direct real estate could be due to a worse relative negotiating position of U.S. pension funds, as the vast majority of funds do not seem to consider the option to invest

 $^{^{16}}$ Adding fund-fixed effects removes considerable variation as the amount of fund investments in real estate subcategories does not vary strongly over time, especially relative to the large cross-sectional variation in size. Thus, the coefficient for log *Mandate* becomes insignificant for REITs and less significant for direct real estate investment costs.

¹⁷Larger funds pay lower fees also for investing in fund-of-funds, but the *Mandate* variable is not significant once we control for fund-fixed effects, because the number of funds investing in fund-of-funds is low and the fund-fixed effects capture most of the variation.

internally and rather exclusively use external managers. One would expect that greater attention to internal management increases the competitive pressure on the external real estate investment managers.

Summarizing, we document that pension funds allocating more assets to real estate realize strong scale advantages in their internal and external investment costs. Investment approach is also a major determinant of real estate investment costs, since greater external management and allocation to fund-of-funds considerably increase the overall costs. Moreover, U.S. pension funds have considerably higher costs for investing in real estate, even after controlling for mandate size and investment approach.

6 Pension fund performance in real estate investments

In the previous sections, we documented that pension funds often opt for investing in direct real estate over REITs, and prefer delegated investment management over internal management, despite the higher costs associated with these approaches. It may be possible that the investment preferences are driven by performance differences in investment approaches. In this section, we examine whether pension fund real estate returns justify their preference for more expensive investment approaches. We first address the performance of allocations to REITs and direct real estate, after deducting returns on self-reported benchmarks and the investment costs. We then relate the net benchmark-adjusted returns to fund characteristics, such as the size of the real estate mandate and the implemented investment approach. We also investigate the persistence in pension fund real estate investment performance.

6.1 Benchmark-adjusted returns

Table 7 reports the returns of pension fund real estate investments by subcategory and investment approach. Panel A shows that the average gross return of pension funds in real estate is about 7 percent during the 1990-2009 period. REITs delivered a higher gross return (10.92 percent) than direct real estate investments (6.70 percent).¹⁸ The gross returns on internally managed assets (7.77 percent) are higher than the returns on external mandates (6.82 percent).

To put these returns into perspective, we compare them with the returns on self-reported benchmarks. In the CEM database, pension funds declare their benchmarks, which are usually market indexes (for example, the NCREIF Index or the FTSE/NAREIT Index for U.S. real

¹⁸Returns on public real estate (REITs) are based on market returns, while direct (private) real estate returns include both returns from net asset valuations and returns from realized transactions. In the analysis we analyze the REIT and direct real estate returns together as well as separately to control for potential differences in the return estimations.

estate investments), against which performance is measured. Benchmark returns can also be a combination of multiple indices, weighted by the asset allocation. The realized returns and the benchmark returns are provided in the local currency.¹⁹ The advantage of using self-declared benchmarks is that these benchmarks more precisely reflect the allocation and risk exposure of the real estate allocations. For example, if a fund is exposed to office buildings in the U.S., benchmarking its returns against the NCREIF Office Index is more appropriate than using the broader NCREIF Property Index. Similarly, if a pension fund invests internationally and engages in any currency management, the benchmark returns are a weighted average of indices in multiple countries and account for the implemented hedging policy. The disadvantage of using self-declared benchmarks is that pension funds can strategically select benchmarks which are easier to outperform, which implies that one should be careful when drawing conclusions if outperformance relative to these benchmarks would be documented.

The results in Table 7 Panel B show that pension funds mostly match, but do not outperform, their self-declared benchmarks on a gross return basis. In this panel, we run a random coefficient regression, with a constant only, for returns on all real estate assets, returns by subcategory and returns by investment approach. An important advantage of the random coefficient model is that it allows for heteroscedasticity-adjusted and fund-specific alphas, while being more robust to outliers than the standard Fama and MacBeth (1973) approach. Following Swamy (1970), the random coefficient model is similar to a generalized least squares approach that puts less weight on the return series of funds that are more volatile. In the regressions, we include every pension fund that has at least three return observations.²⁰

The overall gross benchmark-adjusted returns of all pension funds are not significantly different from zero.²¹ However, we observe outperformance in two cases. First, pension funds obtain positive abnormal annual returns of 108 basis points from internally managed real estate investments. Across all regions, the benchmark-adjusted returns on internal investments are positive, and they are statistically significant for Canadian and European pension funds. Second, we observe positive and significant outperformance of 113 basis points per year for REIT investments. Of course, we cannot conclude that pension funds obtain alpha on a risk-adjusted basis, because our annual data does not allow to control for multiple benchmarks, which may explain a significant portion of REIT returns.²²

¹⁹If currency risk hedging is done at the asset class level, pension funds provide hedged returns and benchmarks. ²⁰Our results do not change if we use all funds in the sample, regardless of the number of observations, or if we use pension funds with at least five observations only.

²¹In a related paper, using data on publicly traded REIT portfolios as well as portfolios of private entities, Hochberg and Mühlhofer (2011) find that both public and private real estate portfolio managers do not exhibit market timing or security selection skills.

²²Hartzell, Mühlhofer, and Titman (2010) investigate REIT mutual fund performance using three sets of REIT-based benchmarks, plus an index of returns derived from non-REIT real estate firms, including homebuilders

U.S. pension funds that delegate investment management through investing in fund-of-funds underperform their self-declared benchmarks by 208 basis points per year, even before deducting investment costs. Part of this significant underperformance may be due to higher performance fees of fund-of-fund managers, because the CEM database captures just the management fees paid to both the fund-of-funds manager and the underlying managers. (Our cost data do not include the performance fees and carried interest paid on either layer, as these costs are deducted directly from the gross returns.)

In Panel C of Table 7 we deduct the investment costs and focus on the net benchmarkadjusted performance of pension fund investments in real estate. Overall, we document an annual underperformance of 86 basis points. This seems to be driven mostly by the underperformance of U.S. pension funds, which significantly underperform their self-declared benchmarks, by 127 basis points per year. The returns on pension fund real estate investments in other regions are not significantly different from zero. Interestingly, U.S. pension funds do not underperform in their internal real estate mandates, but rather in their selection of external asset managers (-129 basis points) and fund-of-funds (-376 basis points). This large and significant underperformance cannot be explained solely by investment costs, because these are much lower than the size of the estimated alphas.

We investigate in more detail why U.S. pension funds underperform their benchmarks during the sample period. Figure 6 displays the gross returns of U.S. pension funds in direct real estate, the returns on the CEM self-declared benchmarks, the returns on the NCREIF Property Index, and the net benchmark-adjusted returns. Until 2004, the performance of U.S. funds in direct real estate was close to their benchmarks. Between 2005 and 2007, U.S. pension funds achieved positive net benchmark-adjusted returns. However, in the last two years of the sample period (2008-2009) U.S. pension funds experienced substantial underperformance in direct real estate. As Figure 6 shows, the net benchmark-adjusted return in 2008 was -6.28 percent, on average. In 2009, the average return of U.S. pension funds in direct real estate was -29.24 percent and they underperformed their self-declared benchmarks by 12.43 percent. The graph provides some evidence that the average underperformance of U.S. funds is to a large extent due to the dismal performance during the recent economic downturn. We cannot further explain the performance of U.S. pension funds using the CEM database, but the poor performance may be due to increased usage of leverage in direct real estate holdings and the choice of more risky allocations during the 2005-2009 period. We observe similar patterns among pension funds from the other three

and real estate operating companies. The REIT-based factors consist of a set of characteristic factors, a set of property-type factors and a set of statistical factors. Using annual return data, we cannot control for this extensive list of factors.

regions, but not as extreme as among U.S. pension funds.

6.2 Explaining performance by fund characteristics

In this section, we explain the net benchmark-adjusted returns by a selection of pension fund characteristics, employing Fama and MacBeth (1973) regressions. In the first stage, we regress the fund-specific net benchmark-adjusted returns on a set of pension fund characteristics for each sample year:

$$R_{i,t} = \alpha_t + \delta_{1,t} Mandate_{i,t} + \delta_{2,t} Costs_{i,t} + \delta_{3,t} InvApproach_{i,t} + \varepsilon_{i,t} \quad i = 1, 2, ..., N \text{ for each } t.$$
(3)

where $R_{i,t}$ refers to the net benchmark-adjusted returns of fund *i* in year *t*. Mandate is the log of the dollar value of the real estate asset portfolio, Costs refers to the real estate investment costs in percentage points, and InvApproach refers to the percentage allocation to external managers, fund of funds, etcetera. The error term $\varepsilon_{i,t}$ is normally distributed with zero mean. In the second stage we estimate the coefficients as the average of the cross-sectional regression estimates:

$$\hat{\alpha} = \frac{1}{T} \sum_{t=1}^{T} \hat{\alpha_t} \qquad \hat{\delta}_1 = \frac{1}{T} \sum_{t=1}^{T} \hat{\delta}_{1,t} \qquad \hat{\delta}_2 = \frac{1}{T} \sum_{t=1}^{T} \hat{\delta}_{2,t} \qquad \hat{\delta}_3 = \frac{1}{T} \sum_{t=1}^{T} \hat{\delta}_{3,t} \tag{4}$$

We correct for autocorrelation and heteroscedasticity using Newey-West standard errors.

Results in Panel A of Table 8 show that real estate mandate size is positively related to performance. A one unit increase in the log of real estate holdings (*Mandate*) increases the net benchmark-adjusted returns by 32 to 43 basis points. The documented economies of scale remain even after controlling for costs and investment approach. Furthermore, we observe that higher costs reduce performance. An increase in costs by 100 basis points results in 103 basis points lower returns. The results also indicate that external management and fund-of-funds diminish performance. A pension fund that delegates the asset management responsibilities to external managers experiences a decrease in net benchmark-adjusted returns of 102 to 189 basis points as compared to a pension fund that invests internally in real estate. Adding more intermediaries in the asset management process, by investing through fund-of-funds, reduces returns by at least 202 basis points.

In Panel B of Table 8 we examine the relation between performance in real estate subcategories and pension fund characteristics. In this panel, mandate size, costs and investment approach variables refer to REITs and direct real estate investments, respectively. For REITs, we use a shorter time period (1998-2009), as the number of observations during the first years is low (see Figure 3 Panel A) and Fama and MacBeth (1973) regressions assign equal weight to every year in the second stage. Our results for REITs indicate that the size of REIT holdings is positively related to performance, controlling for investment approach and costs. There is no significant relation between investment costs or approach and net benchmark-adjusted returns in REITs.

We find significantly positive economies of scale for direct real estate investments as well. A one unit increase in the log of direct real estate assets improves the performance by 31 to 37 basis points. Higher investment costs in direct real estate are disproportionally negatively related to net benchmark-adjusted returns. Higher allocations to external managers and fund-of-funds also result in lower returns from direct real estate. Investing in direct real estate via external managers instead of internal selection of properties results in a 122 to 166 basis point annual decrease in the net benchmark-adjusted returns. Investing through fund-of-funds reduces the net benchmark-adjusted returns by 263 to 359 basis points.

In Table 8 Panel C we analyze the relation between performance and characteristics per investment approach.²³ The results show that larger pension funds have better returns within both internal and external real estate mandates. For externally managed portfolios, a one unit increase in the log of assets improves the annual net benchmark-adjusted returns by 30 to 35 basis points. The scale effect is even stronger for internal management, where a one unit increase in the log of assets increases the returns by 43 basis points. Investment costs are negatively related to external management returns. A 100 basis point increase in the costs reduces returns by 113 basis points per year.

The previous section showed that the last two years of the sample period had a strong influence on investment performance. As a robustness check, we examine whether the exclusion of the 2008-2009 period influences the relation between real estate investment performance and pension fund characteristics. The findings in Appendix Table A.1 confirm that size is positively related to performance, while external management and investing in fund-of-funds still have a disproportionally negative effect on returns. Moreover, the economies of scale effect becomes even stronger.

We acknowledge that precise measures of risk for the real estate investments are not available and therefore that differences in returns may in theory be attributed to differences in risk profiles of investments managed internally, externally or by fund-of-funds. The self-reported benchmarks may not capture entirely the differences in risk-taking across pension funds. However, there is little reason to believe that riskier projects will be managed internally and not by financial intermediaries that have potentially higher expertise and are focused only on real estate.²⁴

 $^{^{23}}$ For fund-of-funds we focus on a shorter time period (2007-2009) because the number of observations in the earlier years is very low (see Figure 3 Panel B).

²⁴Alternatively, we could assign benchmarks to measure risk-adjusted performance instead of using the selfreported benchmarks. However, the correlation of the pension fund returns with the assigned benchmarks is

Summarizing, we document that pension funds investing internally in real estate outperform those funds opting for delegated investment management. Moreover, investing in real estate through fund-of-funds results in substantial underperformance (more than 200 basis points per year) as compared to other investment approaches, which may be due to multiple layers of fees, lack of skill, and possibly greater agency conflicts. Larger funds seem to have better skills, which enable them to select better properties when investing internally, and to select better investment managers when investing externally. When investing externally, larger funds are likely to get preferential treatment, have greater monitoring capacity and may have access to better investment opportunities at lower cost. The positive relation between fund size and performance is in line with evidence on private equity funds, for which a concave relation between fund size and performance has been documented (Kaplan and Schoar, 2005). In contrast, increased fund flows generally lead to underperformance for mutual funds (Chen et al., 2004).

6.3 Persistence

We document that pension funds generally meet, but do not exceed the performance of their benchmarks, and that performance is positively related to the size of real estate holdings, and to the implementation of internal management. We examine whether there is persistence in the performance of pension fund real estate investments, splitting pension funds into five quintiles based on their net benchmark-adjusted returns. Table 9 presents the transition matrixes, i.e., the probabilities that a fund ranked in one of the five quintiles in year t ends up in any of the quintiles in year (t+1). We also investigate the difference in returns in year (t+1) between funds ranked in the lowest and highest quintile in year t. Under the null hypothesis of no persistence, the value of the difference in returns in year (t+1) should be centered on zero, which would mean that past performance is no prediction of future performance. Carpenter and Lynch (1999) show that the t-test for the difference between top and bottom portfolios ranked by past performance is best specified under the null hypothesis of no persistence, as it is the most powerful against the alternatives considered.²⁵

In Panel A of Table 9, we document strong persistence in the performance of pension fund real estate investments. Funds are more likely to end up in a high-ranked quintile next year if they perform well in this year, and funds are more likely to rank low next year if they performed

typically lower than with the self-reported benchmarks. For instance, among U.S. pension funds the correlation between their gross returns in direct real estate and self-reported benchmarks is 0.79, whereas the correlation between their gross returns and the NCREIF Property Index is 0.73. Based on these simple correlations, it seems that the self-reported benchmarks better capture differences across funds in investment style (core vs. value-add or opportunistic), property type and geographic location.

 $^{^{25}}$ Similar methodology has been used by Tonks (2005) to examine the persistence in pension fund returns and Carhart (1997) to examine the performance persistence among mutual funds.

relatively poorly this year. Funds have, on average, a 30 percent chance to remain in the same quintile, and if they do not, they are most likely to move to an adjacent quintile.

The results in Panel B show that there is no persistence in REIT performance. Pension funds ranked in the highest quintile are in fact most likely to end up in the bottom quintile next year. The difference in REIT returns between the top and bottom ranked funds in the following year is small and insignificant. The overall persistence in real estate performance is entirely due to the persistence in direct real estate performance, as shown in Panel C. The last columns of the table provide the year (t + 1) average net benchmark-adjusted return for the pension funds that are in the lowest and highest ranked quintiles in year t, and the t-statistic for the performance difference between the two groups. The net benchmark-adjusted return for the bottom quintile is -3.26 percent, while the return is 1.56 percent for the top quintile. The difference is statistically significant, with a t-statistic of 6.23.

The persistence in performance can potentially be explained by the fact that direct real estate returns are susceptible to appraisal smoothing of property valuations.²⁶ However, Geltner and Goetzmann (2000) argue that the NCREIF Property Index, which captures direct real estate investments, is more like an annual index, partially updated each quarter. Hence, the use of annual returns in this paper should help minimize the problems associated with "stale" appraisals of direct real estate returns. Nevertheless, we also address the persistence in pension fund performance in direct real estate by using a two-year horizon, when the appraisal smoothing effect should have lapsed. Table 9 Panel D shows that 29.82 percent of the funds in the best performing quintile in year t will end up in the same quintile two years later. Funds are also more likely to end up in the worst performing quintile in year (t + 2), if they were ranked in that quintile in year t is 1.98 percentage points (t-statistic of 2.46).

In Appendix Table A.2 we examine whether the persistence results are robust to controlling for the effect of size and investment approach on performance. We run an ordered logit model, where the dependent variable is the quintile ranking based on the performance in year t + 1 and the main independent variable is the quintile ranking in year t, while controlling for real estate mandate size and investment approach. The results indicate that pension fund performance ranking in year t has a significant positive effect on the performance ranking in year t + 1. For example, looking at all real estate assets (Panel A), an increase in the quintile ranking from 3 to 4 increases the probability of ranking among the best performers in year t + 1 by 4.5%. Again,

²⁶For instance, the NCREIF database has various statistical problems, including smoothing and lagging due to the partial adjustment in the index caused by the stale valuations, and artificial seasonality in the index returns due to the clustering of the reappraisals in the fourth calendar quarter.

we document persistence only for pension fund performance in direct real estate.

These results suggest that certain pension funds are persistently more likely to outperform (or underperform) their direct real estate benchmarks, while that is not the case for REIT investors. This finding may be explained by the fact that direct real estate markets are illiquid and not very transparent, which may give insiders an edge. On the other hand, the stock listing of REITs makes the REIT market more transparent and efficient, and outperformance more difficult. Additionally, higher transaction costs and market illiquidity limit the possibility to exploit persistence in direct real estate returns.²⁷

Similar to our findings on persistence in direct real estate performance, persistence has been documented among private equity funds and hedge funds as well. Kaplan and Schoar (2005) find substantial persistence in leverage buyout (LBO) and venture capital (VC) fund performance. General partners (GPs) whose private equity funds outperform the industry in one fund are likely to outperform the industry in the next and vice versa. Fung, Hsieh, Naik, and Ramadorai (2008) document that better performing hedge funds, generating positive alpha, are less likely to be liquidated, and have a higher propensity to deliver alpha persistently.

7 Conclusion

Comparable to investments in private equity and hedge funds, pension funds face a palette of choices to deploy capital in the illiquid property market, the most significant alternative asset class. The allocations to real estate can be managed internally, externally and through fund-of-funds, and can be invested both in REITs and directly in fixed assets. This offers the opportunity to investigate the impact of delegated investment management on costs and performance of investments in private markets. Binsbergen et al. (2008) argue that investing through multiple external asset managers is costly, as it causes agency conflicts between the institutional investor and external managers. We evaluate whether sufficiently large investors can reduce these agency conflicts in diversification, risk-taking and investment horizon objectives, by establishing an internal asset management division, instead of delegating the asset management decisions. According to the Stoughton et al. (2011) financial intermediation model, if it is costly to identify higher quality fund managers, the choice between direct and intermediated asset management will depend upon investor size, since search costs are more easily offset by better performance on a larger investment.

²⁷Prior research on performance persistence in real estate has arrived at similar conclusions. Among mutual funds that invest only in the REIT sector, Kallberg, Liu, and Trzcinka (2000) document little evidence of persistence. On the other hand, among fund managers investing in the direct real estate market, Bond and Mitchell (2010) document performance persistence over a short-term horizon, but there is little evidence of persistence in fund returns over a medium and long-term horizon.

Exploiting access to a unique sample of pension funds, we document that the costs and performance of pension fund real estate investments are indeed mainly determined by two main variables: mandate size and the choice to invest internally or externally. We find strong scale advantages in pension fund real estate investments: large pension funds not only have lower investment costs, but also achieve higher net benchmark-adjusted returns. This is partly due to the fact that larger funds are more likely to opt for internal management, rather than selecting financial intermediaries. Internal management is associated with substantially lower costs and better gross performance as compared to external managers. Moreover, even when large pension funds select an external investment approach, they seem to have better skills than the smaller pension funds in our sample. When investing through financial intermediaries in real estate, larger funds can presumably assert more negotiating power, which then leads to access to more favorable investment opportunities at lower costs.

Surprisingly, larger funds are also more likely to invest in REITs, whereas smaller funds allocate more capital to fund-of-funds in direct real estate. Investing through fund-of-funds results in substantial underperformance as compared to other investment approaches. This is at least partly due to multiple layers of fees, but fund-of-fund managers also seem to lack skills in selecting investment managers, since both their gross and net benchmark-adjusted returns are significantly negative. Especially smaller pension funds do not seem to recognize that REITs represent an investment approach in real estate that is comparable to selecting external managers investing in direct real estate (and much better than fund-of-funds managers), but with substantially lower investment costs.

Overall, the behavior of small and large pension funds suggests that there may be differences between the two groups, with relatively less sophisticated agents among smaller funds, and more sophisticated agents, with an ability to detect profitable real estate investments, among larger funds. Lerner et al. (2007) document that agency conflicts and information gaps associated with assessing private equity fund portfolios lead to dramatic disparities in the performance of venture capital investments across different classes of institutional investors. We document that such information gaps and agency problems can also lead to performance differences within one class of institutional investors – pension funds. These results are consistent with the predictions from the Stoughton et al. (2011) model of financial intermediation, where underperforming assets (funds) can only be sold via financial intermediaries to unsophisticated investors. Our results on the effect of delegated investment management on performance are also in line with Agarwal et al. (2013), who find that the performance of institutions investing in funds of hedge funds is worse than the performance of those institutions investing directly in hedge funds. Fund-of-funds in direct real estate perform worse than REIT mutual funds and funds investing in hedge funds. The literature on the performance of REIT mutual funds shows that this industry generates an average alpha that is either zero or significantly positive.²⁸ Funds investing in hedge funds deliver small alphas, albeit sporadically (Fung et al., 2008), but there is no significant underperformance among hedge funds-of-funds either. Compared to these benchmarks, fundof-funds in direct real estate perform poorly, so it seems surprising that small pension funds increasingly use their services. However, this behavior is consistent with the Lakonishok et al. (1992) model of pension fund portfolio management: despite higher costs and lower returns, pension funds will maintain a preference for external management and fund-of-funds, as a way to shift responsibility for potentially poor performance to the external manager, and even to shift the responsibility for potentially poor performance to the fund-of-funds manager. Goyal and Wahal (2008) show that pension funds continuously engage in hiring and firing external money managers, even though these decisions have, on average, no effect on their performance, while creating substantial transition costs.

This paper has some general implications for institutional investors investing in real estate. Pension funds should consider the full range of possible approaches to real estate investments and avoid extended chains of financial intermediaries. Particularly smaller funds should re-evaluate their extensive use of fund-of-funds to gain exposure to direct real estate and consider substituting part of this allocation with REITs. Smaller pension funds can also implement more passive strategies in REIT investments in order to remain cost-competitive with larger funds.

²⁸For instance, Cici, Corgel, and Gibson (2011) find that REIT mutual funds obtained significant abnormal net returns, while Hartzell et al. (2010) document that REIT mutual funds deliver alpha close to zero and fail to outperform any alternative benchmark net of fees.

References

- Agarwal, V., V. Nanda, and S. Ray (2013). Institutional investment and intermediation in the hedge fund industry. Working Paper: *Georgia State University*.
- Andonov, A., R. Bauer, and M. Cremers (2012). Can large pension funds beat the market? Asset allocation, market timing, security selection and the limits of liquidity. Working Paper: University of Notre Dame.
- Bauer, R., M. Cremers, and R. Frehen (2010). Pension fund performance and costs: Small is beautiful. Working Paper: Yale University.
- Bauer, R., P. Eichholtz, and N. Kok (2010). Corporate governance and performance: The REIT effect. *Real Estate Economics* 38(1), 1–29.
- Bergstresser, D., J. M. Chalmers, and P. Tufano (2009). Assessing the costs and benefits of brokers in the mutual fund industry. *Review of Financial Studies* 22(10), 4129–4156.
- Binsbergen, J. H. v., M. W. Brandt, and R. S. Koijen (2008). Optimal decentralized investment management. The Journal of Finance 63(4), 1849–1895.
- Blake, D., A. G. Rossi, A. Timmermann, I. Tonks, and R. Wermers (2013). Decentralized investment management: Evidence from the pension fund industry. *The Journal of Finance* 68(3), 1133–1178.
- Bond, S. and P. Mitchell (2010). Alpha and persistence in real estate fund performance. The Journal of Real Estate Finance and Economics 41(1), 53–79.
- Brown, K., L. Garlappi, and C. Tiu (2010). Asset allocation and portfolio performance: Evidence from university endowment funds. *Journal of Financial Markets* 13(2), 268–294.
- Brown, S. J., W. N. Goetzmann, and B. Liang (2004). Fees on fees in funds of funds. Journal of Investment Management 2(4), 39–56.
- Carhart, M. (1997). On persistence in mutual fund performance. The Journal of Finance 52(1), 57–82.
- Carpenter, J. and A. Lynch (1999). Survivorship bias and attrition effects in measures of performance persistence. *Journal of Financial Economics* 54(3), 337–374.
- Chen, J., H. Hong, M. Huang, and J. Kubik (2004). Does fund size erode mutual fund performance? The role of liquidity and organization. *The American Economic Review* 94(5), 1276–1302.
- Chen, J., H. Hong, W. Jiang, and J. D. Kubik (2013). Outsourcing mutual fund management: firm boundaries, incentives, and performance. *The Journal of Finance* 68(2), 523–558.
- Cici, G., J. Corgel, and S. Gibson (2011). Can fund managers select outperforming REITs? Examining fund holdings and trades. *Real Estate Economics* 39(3), 455–486.
- Ciochetti, B., T. Craft, and J. Shilling (2002). Institutional investors' preferences for REIT stocks. *Real Estate Economics* 30(4), 567–593.
- Fama, E. and J. MacBeth (1973). Risk, return, and equilibrium: Empirical tests. The Journal of Political Economy 81(3), 607–636.
- French, K. (2008). Presidential address: The cost of active investing. The Journal of Finance 63(4), 1537–1573.

- Friedman, H. (1971). Real estate investment and portfolio theory. Journal of Financial and Quantitative Analysis 6(2), 861–874.
- Fung, W., D. Hsieh, N. Naik, and T. Ramadorai (2008). Hedge funds: Performance, risk, and capital formation. The Journal of Finance 63(4), 1777–1803.
- Geltner, D. and W. Goetzmann (2000). Two decades of commercial property returns: A repeatedmeasures regression-based version of the NCREIF index. *The Journal of Real Estate Finance* and Economics 21(1), 5–21.
- Goyal, A. and S. Wahal (2008). The selection and termination of investment management firms by plan sponsors. *The Journal of Finance* 63(4), 1805–1847.
- Hartzell, J., T. Mühlhofer, and S. Titman (2010). Alternative benchmarks for evaluating mutual fund performance. *Real Estate Economics* 38(1), 121–154.
- Hochberg, Y. and T. Mühlhofer (2011). Market timing and investment selection: Evidence from real estate investors. Working Paper: *Northwestern University*.
- Hochberg, Y. and J. Rauh (2013). Local overweighting and underperformance: Evidence from limited partner private equity investments. *Review of Financial Studies* 26(2), 403–451.
- Kallberg, J., C. Liu, and D. Greig (1996). The role of real estate in the portfolio allocation process. *Real Estate Economics* 24(3), 359–377.
- Kallberg, J., C. Liu, and C. Trzcinka (2000). The value added from investment managers: An examination of funds of REITs. *Journal of Financial and Quantitative Analysis* 35(3), 387–408.
- Kaplan, S. and A. Schoar (2005). Private equity performance: Returns, persistence, and capital flows. *The Journal of Finance* 60(4), 1791–1823.
- Lakonishok, J., A. Shleifer, and R. Vishny (1992). The structure and performance of the money management industry. *Brookings Papers on Economic Activity. Microeconomics*, 339–391.
- Lerner, J., A. Schoar, and W. Wongsunwai (2007). Smart institutions, foolish choices: The limited partner performance puzzle. *The Journal of Finance* 62(2), 731–764.
- Metrick, A. and A. Yasuda (2010). The economics of private equity funds. *Review of Financial Studies* 23(6), 2303–2341.
- Pagliari, J., K. Scherer, and R. Monopoli (2005). Public versus private real estate equities: A more refined, long-term comparison. *Real Estate Economics* 33(1), 147–187.
- Phalippou, L. (2009). Beware of venturing into private equity. *Journal of Economic Perspectives* 23(1), 147–66.
- Phalippou, L. and O. Gottschalg (2009). The performance of private equity funds. *Review of Financial Studies* 22(4), 1747–1776.
- Sharpe, W. F. (1981). Decentralized investment management. The Journal of Finance 36(2), 217–234.
- Stoughton, N. M., Y. Wu, and J. Zechner (2011). Intermediated investment management. The Journal of Finance 66(3), 947–980.
- Swamy, P. (1970). Efficient inference in a random coefficient regression model. *Econometrica* 38(2), 311–323.
- Tonks, I. (2005). Performance persistence of pension-fund managers. *Journal of Business* 78(5), 1917–1942.

Table 1: The CEM database

This table presents the number of pension funds in the CEM database by year (# Funds in data) and the number of pension funds in the CEM database investing in real estate (# Funds in RE). The Avg. Size column shows the average total assets under management (in billion US\$) of the pension funds in the database. The last raw (Total) reports the total number of funds in the CEM database and the total number of pension funds investing in real estate.

Year	1	All funds			U.S.			Canada			Europe		-	Aus/Nzd	
	#Funds in data	#Funds in RE	Avg. Size												
1990	88	70	4.93	35	30	9.46	53	40	1.94						
1991	124	101	4.55	63	52	7.28	61	49	1.72						
1992	164	130	4.59	83	68	7.45	81	62	1.66						
1993	220	161	4.27	134	100	5.92	86	61	1.71						
1994	269	202	3.78	168	128	4.85	98	71	1.58	3	3	15.42			
1995	298	224	4.42	192	152	5.64	102	68	1.75	4	4	13.96			
1996	296	211	4.85	185	139	6.22	105	66	2.03	6	6	11.90			
1997	273	202	5.96	168	131	7.73	97	63	2.58	8	8	9.77			
1998	286	202	6.78	174	133	9.11	104	62	2.51	8	7	11.60			
1999	306	208	8.15	182	137	10.41	110	59	2.55	14	12	22.80			
2000	285	202	9.06	164	125	12.02	104	62	2.86	15	13	20.59	2	2	2.05
2001	294	200	8.56	176	125	10.56	99	58	3.00	17	15	20.98	2	2	2.13
2002	274	184	8.37	156	112	10.80	98	55	2.64	16	14	21.29	4	3	2.19
2003	279	190	9.21	158	118	11.01	96	53	3.07	20	15	25.46	5	4	5.22
2004	288	210	10.72	167	132	12.18	96	57	4.01	18	15	34.76	7	6	6.23
2005	298	217	11.71	156	126	13.12	107	62	5.13	25	20	32.53	10	9	7.88
2006	291	216	14.54	147	121	15.80	102	58	6.99	29	25	37.09	13	12	9.19
2007	354	258	14.16	217	167	12.72	98	56	8.26	28	25	47.76	11	10	9.58
2008	368	280	13.32	211	159	12.30	90	61	8.92	58	52	24.41	9	8	9.87
2009	351	260	13.28	203	153	12.22	92	55	7.44	50	47	27.89	6	5	16.9
Total	884	668		536	409		244	163		86	79		18	17	

Table 2: Descriptive statistics: real estate holdings

This table provides descriptive statistics of pension fund investments in real estate. We present the time series averages of cross-sectional statistics for the 1990-2009 time period, showing the following statistics: median, mean and standard deviation (StDev). Columns # Funds and # Obs present the number of funds investing in real estate or in one of the subcategories and the number of observations. Panels A, B and C display the summary statistics of real estate holdings in million US\$. In Panel A, the real estate assets descriptive statistics are presented separately for U.S., Canadian, European and Australian/New Zealand funds. In Panel B, we split the real estate investments into two subcategories: real estate investment trusts (REITs) and direct real estate. Panel C presents the real estate holdings summary statistics by investment approach. For internal and external statistics we use the entire period 1990-2009. Fund-of-funds exist in the data since 1995 and we present the time series averages of cross-sectional statistics for the 1995-2009 period.

	Median	Mean	StDev	# Funds	# Obs
Panel A: Real esta	te holding	s (in mi	lion US\$;)	
All funds	116	650	1,578	668	3,928
U.S.	147	647	1,417	409	2,408
Canada	47	399	1,072	163	$1,\!178$
Europe	1,049	2,311	$3,\!589$	79	281
Aus/Nzd	451	668	626	17	61
Panel B: Real esta	te holding.	s by subc	category (in million U	S\$)
REITs	104	407	1,290	220	966
Direct real estate	107	549	$1,\!235$	635	$3,\!616$
Panel C: Real esta	te holding	s by inve	estment a	pproach (in a	million US\$)
Internal	230	899	1,690	160	914
External	92	517	1,242	611	3,324
Fund-of-funds	83	96	50	32	94

Table 3: Descriptive statistics: investment approach

This table shows pension fund investment approaches in real estate. For every variable we present the time series averages of cross-sectional means. Columns % Ext and % Int present the percentage of assets managed externally and internally in the period 1990-2009. % FoF shows the percentage of assets invested in fund-of-funds during the 20 years period. Panel A shows the investment approach separately for U.S., Canadian, European and Australian/New Zealand funds. Panel B presents the percentage allocations to different real estate investment approaches for REITs and direct real estate. For REITs our data allows for two distinct decompositions. In addition to % Ext and % Int, we also decompose REIT investments into percentage of assets managed actively (% Act) and passively (% Pas). For direct real estate assets we observe one decomposition in four different investment approaches. In addition to % Ext, % Int, % FoF we also add the percentage of assets invested in fund-of-funds during investment approaches. In addition to % Ext, % Int, % FoF we also add the percentage of assets invested in fund-of-funds during the partnerships (% LP). (In Panel A % LP is combined with % Ext.)

Panel A: Real estate investment approach (in percent)													
	%E	Ext	%I	nt	%	FoF							
All funds	79.	63	18.	94	1.43								
U.S.	90.	40	7.6	52	1	.97							
Canada	64.	25	35.	62	0.13								
Europe	47.	11	51.	48	1	.41							
Aus/Nzd	84.	41	14.	85	0	.74							
Panel B: Real esta	te invest	ement ap	proach b	y subcar	tegory (in	n percent)							
	%Ext	%Int	%FoF	%LP	%Act	%Pas							
REITs	54.66	45.34	_	-	94.05	5.95							
Direct real estate	78.41 16.81		1.74 3.04		-	-							

Table 4: Descriptive statistics: real estate investment costs

This table provides the descriptive statistics on investment costs of pension funds investing in real estate (in basis points). The values presented are time series averages of cross-sectional statistics for the 1990-2009 time period (for fund-of-funds 1995-2009). The statistics presented are median, mean and standard deviation (*StDev*). In Panel A, the cost statistics are presented for all funds, as well as separately for U.S., Canadian, European and Australian/New Zealand funds. In Panel B, we split the real estate investment costs into REITs and direct real estate. We split REIT investment costs into two investment approaches: internal and external. For direct real estate we distinguish four approaches: internal, external, limited partnerships and fund-of-funds. Costs for all internal mandates are a weighted average of internal investment costs across all subcategories. Costs for all external mandates are calculated as a weighted average of costs for external mandates in REITs, external mandates in direct real estate, limited partnerships in direct real estate and external mandates in other real assets. Investments in direct real estate via fund-of-funds are the only category from Panel B not incorporated in Panel C, because we analyze the fund-of-funds as a separate investment approach.

	Median	Mean	StDev	# Funds	# Obs
Panel A: Costs in basis	points by	region			
All funds	67.24	76.19	84.61	662	3,815
U.S.	83.48	91.12	90.61	407	2,353
Canada	44.97	55.54	51.55	161	1,144
Europe	30.31	37.62	33.74	77	259
Aus/Nzd	42.90	44.82	18.79	17	59
Panel B: Costs in basis	points by	subcatego	ory and ir	nvestment a	pproach
REITs:	32.75	41.45	57.18	213	917
- Internal	8.35	12.06	14.04	50	286
- External	52.61	62.75	68.37	181	698
Direct real estate:	72.47	82.89	100.30	635	$3,\!595$
- Internal	22.81	31.40	31.63	129	675
- External	78.52	88.09	85.73	567	2,941
- Limited partnership	122.58	143.15	131.74	53	154
- Fund-of-funds	170.70	182.56	43.94	32	94
Panel C: Costs in basis	points by	investme	nt approa	ach	
Internal	18.51	26.24	27.88	148	834
External	76.35	86.08	88.63	607	$3,\!245$

Table 5: Regression results: real estate investments and pension fund characteristics

In Panel A the dependent variable is constructed based on the decision to invest in REITs or direct real estate, only taking into account funds investing in real estate. Panel A provides the results of logit regressions explaining whether a pension fund invests in real estate internally, externally or through fund-of-funds. As independent variables we include *Fund size* - log of total pension fund assets, *Alternatives* - strategic allocation to other alternative asset classes, % REITs - allocation to real estate investment trusts (REITs) as a percentage of all real estate assets, *Public* and *Other* - dummy variables capturing pension fund type (the base result refers to Corporate funds), *Canada, Europe* and *Aus/Nzd* - regional dummy variables (the base result refers to U.S. funds). We present the marginal effects (elasticities) at the means of the independent variables. The marginal effects for the dummy variables are estimated for discrete changes from 0 to 1. We also include year dummies (*YD*) and cluster the standard errors by pension fund, allowing for intragroup correlation. We report standard errors in brackets and significance levels with *, ** and ***, which correspond to 0.10, 0.05 and 0.01, respectively.

	Fund size	Alternatives	$\% \mathrm{REITs}$	Public	Other	Canada	Europe	$\mathrm{Aus}/\mathrm{Nzd}$	YD	Funds	Observations	Pseudo \mathbb{R}^2
Panel A: Logit regressi	ons - if a per	nsion fund inve	sts in real e	state, doe	s it inves	t in REITs ,	/ Direct RE?)				
Direct RE only	-0.058***	0.306*							Yes	668	3,928	0.180
	[0.011]	[0.187]										
Direct RE only	-0.040***	0.359^{*}		-0.041	-0.003	0.118^{***}	-0.201**	-0.103	Yes	668	3,928	0.214
	[0.012]	[0.191]		[0.039]	[0.050]	[0.035]	[0.089]	[0.105]				
REITs only	0.005	-0.184							Yes	668	3,928	0.066
	[0.004]	[0.116]										
REITs only	-0.001	-0.166		0.017	-0.016	-0.017	0.054	-0.005	Yes	668	3,928	0.086
	[0.005]	[0.126]		[0.016]	[0.012]	[0.019]	[0.035]	[0.021]				
REITs and Direct RE	0.053^{***}	-0.051							Yes	668	3,928	0.180
	[0.010]	[0.147]										
REITs and Direct RE	0.041***	-0.114		0.009	0.033	-0.106***	0.083	0.090	Yes	668	3,928	0.222
	[0.010]	[0.139]		[0.026]	[0.046]	[0.026]	[0.059]	[0.080]				
Panel B: Logit regression	ons - which d	approach do per	nsion funds	implemen	t in real	estate invest	ments?					
Internal	0.075***	-1.200***	0.138**						Yes	668	3,928	0.093
	[0.013]	[0.309]	[0.055]									
Internal	0.100***	-0.397	0.192***	-0.015	0.021	0.467^{***}	0.409^{***}	0.180	Yes	668	3,928	0.253
	[0.016]	[0.279]	[0.050]	[0.040]	[0.050]	[0.062]	[0.101]	[0.137]				
External	-0.015	1.064***	-0.104**						Yes	668	3,928	0.042
	[0.010]	[0.280]	[0.046]									
External	-0.026**	0.507**	-0.123***	-0.015	-0.010	-0.284***	-0.232***	0.018	Yes	668	3,928	0.160
	[0.010]	[0.215]	[0.033]	[0.036]	[0.034]	[0.050]	[0.087]	[0.071]				
FoF	-0.005*	0.033	-0.016						Yes	668	3,928	0.109
	[0.003]	[0.024]	[0.016]									
FoF	-0.005**	0.015	-0.016*	0.014	-0.005	-0.018**	0.021	0.027	Yes	668	3,928	0.215
	[0.002]	[0.015]	[0.010]	[0.012]	[0.004]	[0.008]	[0.017]	[0.028]				

Table 6: Regression results: real estate investment costs

Panel A of this table reports the results of pooled panel regressions of the real estate investment costs for all funds and per region. Panel B reports the results of pooled panel regressions of the investment costs for different real estate subcategories. In Panel C, we use the costs by investment approach as dependent variable. As independent variables, we include the log of real estate assets in millions of dollars (*Mandate*), and the percentage allocations to externally managed (% Ext) mandates and fund-of-funds (% FoF). When analyzing the REITs costs, we include the following independent variables: log of REIT investments (*Mandate*) and the percentage allocations to externally (% Ext) and actively (% Act) managed REIT assets. When analyzing Direct RE costs, we include: log of direct real estate investments (*Mandate*) and the percentage allocations to externally managed (% Ext) mandates, limited partnerships (% LP) and fund-of-funds (% FoF). In Panel C, *Mandate* refers to the log of assets managed internally, externally or through fund-of-funds, respectively. We use two types of pooled panel regressions: (1) with year and regional dummies; and (2) with year and fund-fixed effects (*FE*). All regressions use robust standard errors clustered by fund. We report standard errors in brackets and significance levels with *, ** and ***, which correspond to 0.10, 0.05 and 0.01, respectively. The R^2 column presents the adjusted R-square.

	Cons.	Mandate	%Ext	%Act	%FoF	%LP	Canada	Europe	Aus/Nzd	FE	\mathbf{R}^2
Panel A: 0	Costs regressi	ons for all f	unds and by	region							
All funds	89.67*** [12.23]	-9.80*** [0.91]	33.12*** [4.96]		100.49*** [13.94]		-36.29*** [4.12]	-27.61*** [6.88]	-40.64*** [13.23]	No	0.10
All funds	185.96^{***} [65.96]	-32.25^{**} [14.24]	21.36^{**} [9.31]		122.03^{***} [41.95]		[]	[0.00]	[10.20]	Yes	0.25
U.S.	222.76** [97.62]	-41.51** [20.91]	30.87 [21.15]		151.48^{***} [52.75]					Yes	0.20
Canada	[16.73]	-10.71^{***} [3.93]	23.43^{**} [11.09]		-28.31 [26.81]					Yes	0.43
Europe	154.03 [133.85]	-20.04 [22.10]	15.85^{**} [6.76]		72.79** [35.82]					Yes	0.76
Aus/Nzd	-10.65 [27.83]	1.79 [4.59]	23.75 [16.53]		131.28^{***} [35.60]					Yes	0.83
Panel B: 0	Costs regressi	ons by real e	estate subcat	egory							
REITs	6.41 [78.27]	-9.89*** [1.67]	30.82*** [6.96]	35.29*** [10.67]			-10.81 [9.17]	-15.50** [7.00]	-22.41 [14.09]	No	0.12
REITs	185.22 [151.45]	-32.99 [27.44]	33.27** [16.07]	10.88 [17.58]						Yes	0.47
Direct	110.94^{***} [19.77]	-12.72*** [1.28]	26.50*** [7.10]		85.71^{***} [17.98]	139.67^{***} [14.67]	-43.29*** [5.81]	-33.54^{***} [9.71]	-33.46* [18.40]	No	0.09
Direct	164.89*** [62.37]	-25.82* [13.33]	17.76^{**} [8.82]		135.81^{***} [44.68]	111.42* [62.76]	. ,	. ,		Yes	0.61
Panel C: 0	Costs regressi	ons by inves	tment appro	ach							
Internal	33.19*** [7.46]	-3.57^{***} [0.51]					6.19^{***} [2.25]	0.07 [3.04]	1.90 [8.27]	No	0.08
Internal	58.34*** [16.43]	-6.84** [3.06]								Yes	0.65
External	126.79^{***} [15.51]	-11.06*** [1.10]					-41.44^{***} [4.88]	-25.44*** [8.49]	-40.90*** [14.89]	No	0.05
External	218.12^{***} [63.15]	-34.92** [15.68]								Yes	0.21
FoF	240.61*** [75.34]	-16.41^{*} [9.76]					-74.86 [53.22]	22.72 [26.66]	80.21** [39.21]	No	0.09
FoF	346.84^{*} [177.03]	-54.04 [58.39]					. J	. J		Yes	0.64

Table 7: Pension fund returns in real estate investments

This table presents the pension fund returns in real estate investments. Panel A shows the time series averages of cross-sectional mean gross returns for the 1990-2009 time period (for fund-of-funds 1995-2009). Standard deviations of the gross returns are in brackets. In Panel B, we deduct self-declared benchmark returns from pension fund returns, resulting in gross benchmark-adjusted returns. In Panel C, we also deduct the investment costs, resulting in net benchmark-adjusted returns. In Panels B and C, we run a random coefficient model with a constant only, for every fund that has at least three observations. The *All RE Assets* column presents the constants for the performance in all real estate assets together for all funds and per region. The consecutive two columns present the constants for performance in subcategories: REITs and direct real estate. The last three columns report the performance of different investment approaches: internal, external and fund-of-funds (*FoF*). In Panels B and C, we report the constant and standard error in brackets, and denote significance levels with *, ** and ***, which correspond to 0.10, 0.05 and 0.01, respectively. In Panel D, we report the number of funds and observations (in parentheses) included in these regressions.

	All RE Assets		category		Approach	
		REITs	Direct RE	Internal	External	FoF
Panel A:	Gross returns (percer	nt)				
All funds	7.00	10.92	6.70	7.77	6.82	6.72
	[9.41]	[10.21]	[8.40]	[11.20]	[9.17]	[7.85]
Panel B:	Gross benchmark-adj	usted retur	ns (percent)			
All funds	-0.10	1.13**	-0.18	1.08**	-0.20	-1.71
	[0.26]	[0.52]	[0.30]	[0.49]	[0.31]	[3.21]
U.S.	-0.38	1.06	-0.47	0.47	-0.38	-2.08^{**}
	[0.34]	[0.67]	[0.40]	[0.90]	[0.38]	[0.91]
Canada	0.40	1.92	0.31	1.20^{*}	0.28	
	[0.50]	[1.48]	[0.50]	[0.72]	[0.61]	
Europe	0.42	1.56	0.40	1.75**	-0.25	
	[0.75]	[1.23]	[1.10]	[0.89]	[1.43]	
Aus/Nzd	0.02	-0.06	-0.04		0.14	
,	[1.45]	[0.35]	[1.58]		[1.64]	
Panel C:	Net benchmark-adjus	ted returns	(percent)			
All funds	-0.86***	0.70	-0.98***	0.81*	-1.05***	-3.90
	[0.27]	[0.52]	[0.30]	[0.49]	[0.32]	[3.39]
U.S.	-1.27***	0.56	-1.43***	0.21	-1.29***	-3.76***
	[0.35]	[0.66]	[0.41]	[0.90]	[0.39]	[0.92]
Canada	-0.17	1.59	-0.28	0.89	-0.45	
	[0.51]	[1.52]	[0.51]	[0.72]	[0.62]	
Europe	0.00	1.33	-0.10	1.55^{*}	-0.98	
	[0.78]	[1.23]	[1.12]	[0.90]	[1.45]	
Aus/Nzd	-0.41	-0.31	-0.59	[]	-0.30	
	[1.47]	[0.33]	[1.61]		[1.66]	
Panel D:	Number of funds and	observatio	ns included in	n the regressi	ons	
All funds	392	107	373	83	346	8
	(3,136)	(703)	(3,004)	(686)	(2,624)	(55)
U.S.	248	76	232	25	234	5
	(1,967)	(491)	(1,872)	(198)	(1,833)	(46)
Canada	109	10	106	43	83	(10)
Januar	(955)	(75)	(918)	(386)	(626)	
Europe	26	16	26	(300)	21	
Luopo	(173)	(114)	(171)	(99)	(127)	
Aus/Nzd	9	(114) 5	9	(00)	8	
1100/1120	(41)	(23)	(43)		(38)	
	(11)	(29)	(97)		(00)	

Table 8: Regression results: performance and characteristics

We estimate Fama-MacBeth regressions on the net benchmark-adjusted returns and correct for autocorrelation and heteroscedasticity using Newey-West with three lags. The net benchmark-adjusted returns are constructed after deducting the costs and self-declared benchmark returns from pension fund real estate returns. In Panel A, the dependent variable is the net benchmark-adjusted return on all real estate assets of all pension funds. In Panel B, the dependent variable is the net benchmark-adjusted return on REITs or direct real estate. In Panel C, the dependent variable is the net benchmark-adjusted return on all assets managed internally, externally or via fund-of-funds. We include the following characteristics: *Mandate* - log of total holdings in real estate (Panel A), log of holdings in one subcategory (Panel B) or log of holdings in one investment approach (Panel C), *Costs* - total costs for investing in real estate, subcategory of real estate or investment approach, % Ext - percentage of investments in external mandates, % Act - percentage in active mandates, % FoF - percentage in fund-of-funds, and % LP - percentage in limited partnerships. We report standard errors in brackets and significance levels with *, ** and ***, which correspond to 0.10, 0.05 and 0.01, respectively.

	Cons.	Mandate	Costs	%Ext	%Act	%FoF	%LP	# Funds	# Obs.
Panel A: P	Performance	and charac	eteristics for	r all real es	tate asse	ets			
All assets	-2.51***	0.43***						634	3,463
	[0.37]	[0.12]							
All assets	1.06			-1.89***		-3.33***		634	3,463
	[0.75]			[0.58]		[0.98]			
All assets	-0.85	0.37***		-1.56**		-3.05***		634	$3,\!463$
	[0.79]	[0.13]		[0.64]		[0.87]			
All assets	-0.28	0.32**	-1.03***	-1.02**		-2.02***		634	$3,\!463$
	[0.97]	[0.15]	[0.36]	[0.48]		[0.69]			
Panel B: P	Performance	and charac	eteristics by	real estate	subcateg	jory			
REITs	-5.77***	0.61***		2.54	1.46			199	802
	[2.24]	[0.24]		[1.74]	[1.27]				
REITs	-6.38*	0.70**	0.13	2.42	1.61			199	802
	[3.21]	[0.32]	[1.22]	[1.47]	[1.57]				
Direct RE	-0.85	0.37***		-1.66***		-3.59***	0.25	608	3,324
	[0.83]	[0.10]		[0.68]		[1.05]	[1.87]		
Direct RE	-0.02	0.31***	-1.11***	-1.22**		-2.63***	1.00	608	3,324
	[1.05]	[0.12]	[0.34]	[0.56]		[0.78]	[1.50]		
Panel C: P	Performance	and charac	eteristics by	investmen	t approa	ch			
Internal	-1.18	0.43*						141	761
	[1.37]	[0.26]							
Internal	-0.71	0.43	-2.56					141	761
	[2.09]	[0.28]	[2.96]						
External	-2.29***	0.35***	LJ					580	2,937
	[0.41]	[0.13]							,
External	-1.07	0.30**	-1.13***					580	2,937
	[0.70]	[0.14]	[0.41]						,
FoF	1.48	-1.96						29	53
	[4.94]	[2.02]							
FoF	4.92	-2.16	-1.05					29	53
	[15.84]	[2.50]	[4.58]						

Table 9: Persistence in the performance of pension fund real estate investments

Pension funds are placed into quintiles based on their total net benchmark-adjusted returns (Panel A), direct real estate returns (Panels B and C) and REIT returns (Panel D). *High* row or column represents the quintile with the highest return. In the transition matrices, percentages represent the probability that a fund which was ranked in one of the five quintiles in year t ends up in any of the quintiles in year (t + 1). *Return in* (t + 1)columns present the total, direct real estate and REIT net benchmark-adjusted returns in year (t + 1) of the top and bottom quintiles, which are formed in year t. The *Test Diff* column is a t-statistic of the difference in net benchmark-adjusted returns between the low and high quintile. In Panel C, we investigate the persistence in the performance of pension fund direct real estate investments over a two-year horizon to control for possible short-term smoothing of the returns. In Panel D, the analysis of persistence in performance of pension fund REIT investments is based on the 1998-2009 period, whereas in the other panels we employ the entire sample period.

			Year ((t+1) rankin		Return	Test		
		Low	2	3	High	Low	High	Diff	
	Low	34.10%	22.04%	16.01%	12.89%	14.97%	-2.95	1.31	5.89***
	2	22.11%	$\mathbf{27.01\%}$	23.09%	14.48%	13.31%			
Year t ranking	3	15.54%	20.12%	$\mathbf{29.08\%}$	21.31%	13.94%			
	4	12.14%	15.61%	16.38%	31.98%	23.89%			
	High	16.57%	12.48%	11.70%	20.66%	$\mathbf{38.60\%}$			

Panel B: REITs (1998-2009 period)

			Year (t+1) ranki	Return	Test			
		Low	2	3	4	High	Low	High	Diff
	Low	30.36%	13.39%	15.18%	21.43%	19.64%	-0.56	-0.35	0.13
	2	16.04%	$\mathbf{31.13\%}$	29.25%	14.15%	9.43%			
Year t ranking	3	13.16%	$\mathbf{28.07\%}$	18.42%	24.56%	15.79%			
	4	15.97%	10.92%	25.21%	$\mathbf{30.25\%}$	17.65%			
	High	$\mathbf{31.19\%}$	12.84%	16.51%	14.68%	24.77%			

Panel C: Direct real estate (one-year persistence)

			Year ((t+1) ranki	Return	Test			
		Low	2	3	4	High	Low	High	Diff
	Low	34.30%	22.11%	16.94%	13.84%	12.81%	-3.26	1.56	6.23***
	2	19.80%	$\mathbf{27.96\%}$	23.06%	15.10%	14.08%			
Year t ranking	3	15.43%	20.04%	26.65%	22.44%	15.43%			
	4	13.43%	15.70%	17.98%	$\mathbf{29.75\%}$	23.14%			
	High	15.34%	12.55%	12.75%	20.32%	$\mathbf{39.04\%}$			

Panel D: Direct real estate (two-years persistence)

			Year ((t+2) rankii		Return	Test		
		Low	2	3	High	Low	High	Diff	
	Low	26.24%	20.44%	17.13%	16.85%	19.34%	-1.43	0.55	2.46***
	2	20.16%	$\mathbf{26.26\%}$	20.69%	18.04%	14.85%			
Year t ranking	3	13.40%	19.60%	$\mathbf{27.79\%}$	23.33%	15.88%			
	4	16.71%	17.72%	18.73%	$\mathbf{24.81\%}$	22.03%			
	High	18.30%	16.54%	15.54%	19.80%	$\mathbf{29.82\%}$			

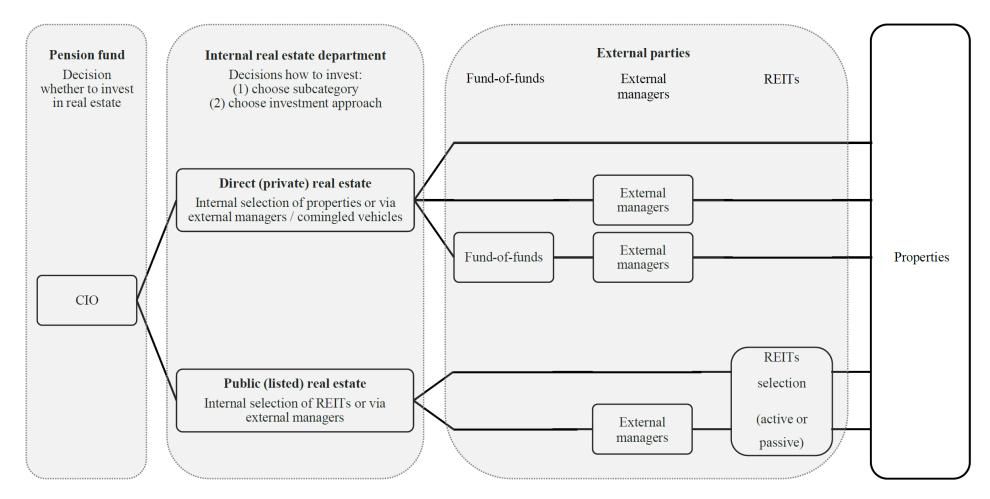


Figure 1: How pension funds invest in real estate: the institutional marketplace and the investment process

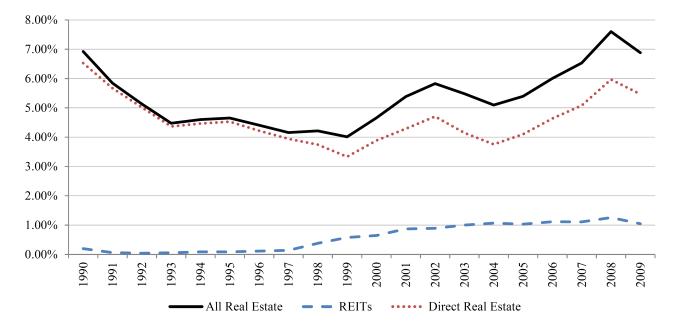


Figure 2: Real estate as a percentage of total pension fund assets

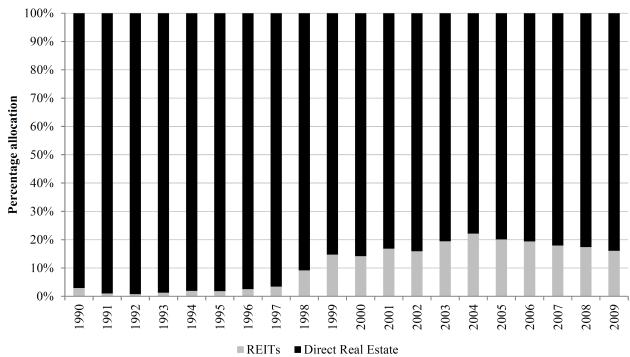
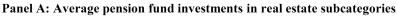
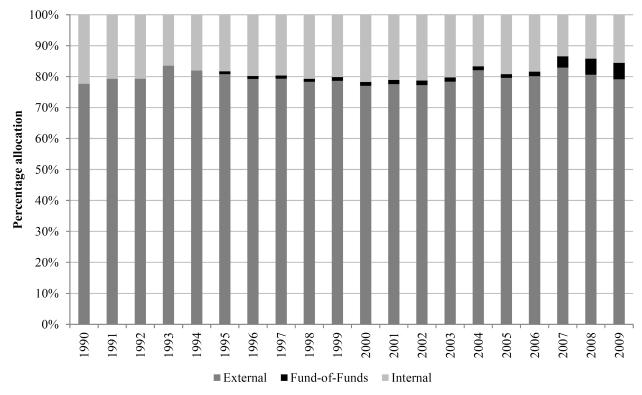
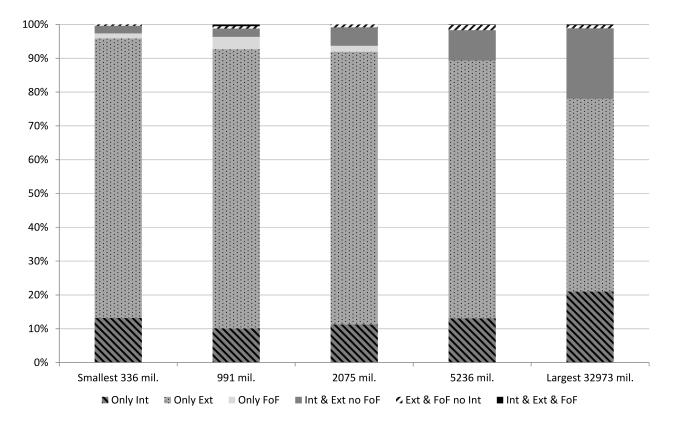
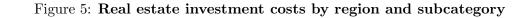
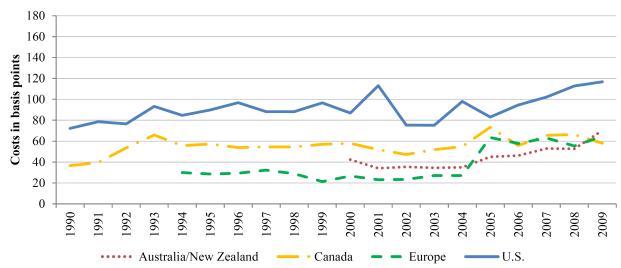
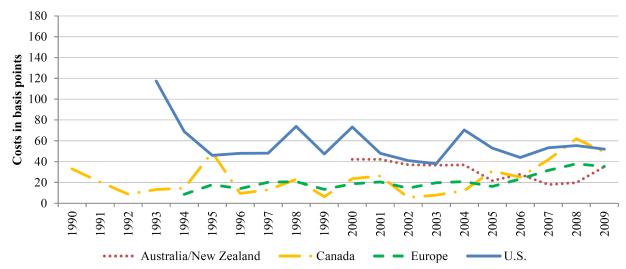
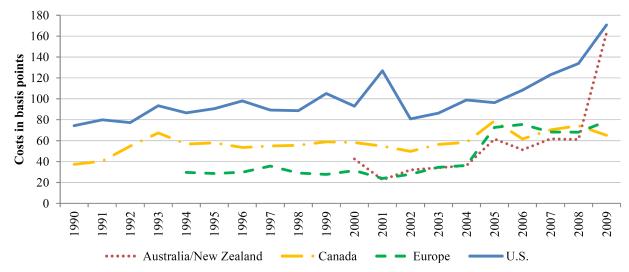




Figure 3: Allocations to real estate subcategories and investment approaches over time

Panel B: Average percentage of assets allocated to an investment approach


Figure 4: Pension fund investment approach in real estate by size quintiles



Panel B: REIT investment costs by region (in basis points)

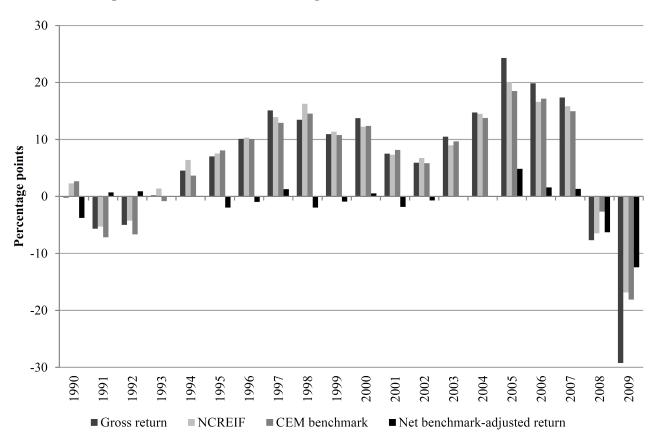


Figure 6: Performance of U.S. pension funds in direct real estate

Table A.1: Regression results: performance and characteristics 1990-2007 Robustness check of Table 8

We estimate Fama-MacBeth regressions on the net benchmark-adjusted returns and correct for autocorrelation and heteroscedasticity using Newey-West with three lags. The net benchmark-adjusted returns are constructed after deducting the costs and self-declared benchmark returns from pension fund real estate returns. In Panel A, the dependent variable is the net benchmark-adjusted return on all real estate assets of all pension funds. In Panel B, the dependent variable is the net benchmark-adjusted return on REITs or direct real estate. In Panel C, the dependent variable is the net benchmark-adjusted return on all assets managed internally, externally or via fund-of-funds. We include the following characteristics: *Mandate* - log of total holdings in real estate (Panel A), log of holdings in one subcategory (Panel B) or log of holdings in one investment approach (Panel C), *Costs* - total costs for investing in real estate, subcategory of real estate or investment approach, % Ext - percentage of investments in external mandates, % Act - percentage in active mandates, % FoF - percentage in fund-of-funds, and % LP - percentage in limited partnerships. We report standard errors in brackets and significance levels with *, ** and ***, which correspond to 0.10, 0.05 and 0.01, respectively.

	Cons.	Mandate	Costs	%Ext	%Act	%FoF	%LP	#Funds	# Obs
Panel A: P	erformance	and charac	eteristics for	r all real es	tate asse	ets			
All assets	-2.35***	0.52***						570	2,985
	[0.42]	[0.10]							
All assets	1.45			-1.63***		-3.38***		570	2,985
	[0.89]			[0.49]		[1.08]			
All assets	-1.14	0.48***		-1.17***		-2.87***		570	2,985
	[0.70]	[0.09]	o – stalada	[0.42]		[0.89]		~ ~ ~	
All assets	-0.78	0.45***	-0.75**	-0.79**		-2.21***		570	2,985
	[0.77]	[0.09]	[0.30]	[0.37]		[0.80]			
Panel B: P	erformance	and charac	eteristics by	real estate	subcateg	jory			
REITs	-6.51**	0.81***		2.27	1.74			166	601
	[2.76]	[0.32]		[2.04]	[1.50]				
REITs	-7.08*	0.87^{**}	-0.40	2.26	2.10			166	601
	[3.30]	[0.36]	[1.27]	[1.53]	[1.33]				
Direct RE	-0.90	0.44^{***}		-1.23***		-3.39***	1.48	543	2,869
	[0.89]	[0.08]		[0.43]		[1.06]	[1.58]		
Direct RE	-0.35	0.41^{***}	-0.89***	-0.90**		-2.67^{***}	1.67	543	2,869
	[1.00]	[0.08]	[0.32]	[0.37]		[0.85]	[1.48]		
Panel C: P	erformance	and charac	eteristics by	investmen	t approa	ch			
Internal	-1.79	0.60***						130	665
	[1.25]	[0.22]							
Internal	-1.30	0.58^{**}	-2.13					130	665
	[2.18]	[0.27]	[3.18]						
External	-2.14***	0.46^{***}						519	2,520
	[0.44]	[0.10]							
External	-1.32*	0.43***	-0.86**					519	2,520
	[0.73]	[0.10]	[0.37]						

Table A.2: Regression results: performance persistence

The net benchmark-adjusted returns are constructed after deducting the costs and self-declared benchmark returns from pension fund real estate returns. Pension funds are placed into quintiles based on their total net benchmark-adjusted returns (Panel A), direct real estate returns (Panels B and C) and REIT returns (Panel D). In Panel C, we investigate the persistence in the performance of pension fund direct real estate investments over a two-year horizon to control for possible short-term smoothing of the returns. In Panel D, the analysis of persistence in performance of pension fund REIT investments is based on the 1998-2009 period, whereas in the other panels we employ the entire sample period. The coefficients in the table present the marginal effects after an ordered logit model. The dependent variable is the quintile ranking based on returns in year t. We show the marginal effects for the probability to be ranked in the quintile with lowest and in the quintile with the highest returns. The $Rank_{(t-1)}$ variable is the quintile ranking in the previous year. The $Rank_{(t-2)}$ variable is the quintile ranking two years ago. We also include the following variables: Mandate - log of total holdings in real estate (Panel A), log of REIT holdings (Panel B) or log of direct real estate holdings (Panels C and D), Costs - total costs for investing in real estate, REITs or direct real estate, % Ext - percentage of investments in external mandates, % Act - percentage in active mandates, % FoF - percentage in fund-of-funds, and % LP percentage in limited partnerships. The marginal effects are estimated at the median values. In the ordered logit model we also add year dummy variables and cluster the standard errors by funds. We report standard errors in brackets and significance levels with *, ** and ***, which correspond to 0.10, 0.05 and 0.01, respectively.

	$Rank_{(t-1)}$	$Rank_{(t-2)}$	Mandate	Costs	%Ext	%Act	%FoF	%LP	YD
Panel A: All r	eal estate ass	sets							
Low ranking	-0.054***		-0.016***	0.059***	0.033*		0.002		Yes
	[0.007]		[0.004]	[0.019]	[0.020]		[0.062]		
High ranking	0.045^{***}		0.013***	-0.048***	-0.027*		-0.002		Yes
	[0.006]		[0.003]	[0.017]	[0.016]		[0.051]		
Panel B: Direc	et real estate	(one-year pe	rsistence)						
Low ranking	-0.053***		-0.013***	0.045***	0.042**		0.022	0.039	Yes
	[0.006]		[0.004]	[0.017]	[0.018]		[0.046]	[0.045]	
High ranking	0.048***		0.012***	-0.041**	-0.038***		-0.020	-0.035	Yes
	[0.006]		[0.003]	[0.017]	[0.015]		[0.042]	[0.041]	
Panel C: Direc	et real estate	(two-year pe	rsistence)						
Low ranking		-0.018***	-0.016***	0.074***	0.058**		0.087*	0.039	Yes
		[0.005]	[0.005]	[0.021]	[0.025]		[0.050]	[0.062]	
High ranking		0.015***	0.014***	-0.062***	-0.049***		-0.073*	-0.033	Yes
		[0.005]	[0.004]	[0.020]	[0.019]		[0.041]	[0.052]	
Panel D: REI	Ts (1998-200	9)							
Low ranking	-0.010		-0.021*	-0.037	-0.025	-0.086**			Yes
	[0.011]		[0.012]	[0.068]	[0.041]	[0.036]			
High ranking	0.009		0.018^{*}	0.031	0.022	0.074^{*}			Yes
	[0.009]		[0.010]	[0.054]	[0.037]	[0.039]			